簡易檢索 / 詳目顯示

研究生: 郭紫軒
Kuo, Tzu-Hsuan
論文名稱: Direct Arylation for Synthesis of Cyclopentadithiophene-Methylbenzoate Copolymers and Their Application as Conductive Binders in Lithium Ion Batteries
指導教授: 堀江正樹
Masaki Horie
口試委員: 蘇安仲
Su, An-Chung
陳信龍
Chen, Hsin-Lung
游進陽
Yu, Chin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 共軛導電高分子鋰離子電池
外文關鍵詞: conjugated polymer, lithium ion battery
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Silicon is one of the most promising anode materials for lithium ion batteries owing to its high theoretical energy capacity. Traditionally, the anodes of batteries are composed of three components, active materials, binders, and conductive additives respectively. However, during cycles of lithiation and delithiation, the large volume expansions occur to cause disconnection between silicon and binders, further resulting in drastic capacity fade.
    In this work, a series of conjugated copolymers, comprising cyclopentadithiophene (CPDT), ethylenedioxythiophene (EDOT), fluorene (F), and methylbenzoate (MB), were developed to obtain suitable polymers for silicon binders with both properties of electric and ionic conductivities and mechanical integrities. These polymers were synthesized through the facile synthetic method, Pd-catalyzed direct arylation polycondensation. Reaction conditions were optimized by changing monomer composition ratios, amount of Pd-catalyst, temperatures, reaction time, and solvents. These copolymers were obtained with high molecular weight (Mn = 21200-53000), which was determined by gel permeation chromatography (GPC) eluted with THF compared to polystyrene standards. Methyl ester group (–COOCH3) on MB in these polymers was converted to carboxylic acid (–COOH) via saponification in the presence of KOH aq. followed by treatment with HCl aq. Optical and electrochemical properties of the polymers were measured to estimated bandgap and HOMO and LUMO levels. The polymers exhibited bandgap around 2.0 eV. Impressively, a polymer containing CPDT and MB units showed a quite narrow bandgap 1.57 eV, which had good electric conductivity.
    The polymers were used as conducting binders for Si-nanopowder to prepare anode electrodes in lithium ion batteries. In cycle-life tests, the polymers with the COOH functional groups showed great improvement because the COOH groups enhanced ionic conductivity with better adhesion property between the polymers and Si-nanopowder. In particular, the battery fabricated using P[CPDT-MB(COOH)] showed the highest performance with a specific capacity up to 1820 mAh/g at 0.1 C and 1250 mAh/g at 0.5 C for the entire electrode after 100 cycles, and good stability at various rates at 70 cycles. Morphology of the anode electrodes was measured by a field emission scanning electron microscope, showing that some cracks were formed after the cycle test. Ionic conductivities of the polymers were estimated by electrochemical impedance analysis. P[CPDT-MB(COOH)] showed much higher ionic conductivity of 1.58 x 10-10 S cm-1 than that of original polymer P(CPDT-MB) (3.16 x 10-23 S cm-1). These results account for the high cyclic stability of the battery of P[CPDT-MB(COOH)].


    Table of contents Abstract I Table of contents III Chapter 1. Introduction and purpose 1 1.1 Introduction 1 1.2 Conjugated polymers 1 1.3 Applications of conjugated polymers 2 1.3.1 Lithium ion batteries 3 1.4 Synthesis methods of conjugated polymers 8 1.4.1 Stille Coupling Reaction 9 1.4.2 Suzuki-Miyaura coupling reaction 11 1.4.3 Direct arylation 14 1.5 Structure-property relationship of conjugated polymers 17 1.6 Aim of this work 21 Chapter 2. Synthesis and characterization of copolymers 22 2.1 Introduction 22 2.2 Synthesis 23 2.2.1 Synthesis of monomers 23 2.2.2 Synthesis of polymers via direct arylation 25 2.2.3 Synthesis of polymers via saponification 35 2.3 Optical and electrochemical properties 39 Chapter 3. Fabrication and characterization of lithium ion batteries using Si-based anodes with conductive polymer binders 48 3.1 Introduction 48 3.2 Fabrication of lithium ion batteries 48 3.2.1 Preparation of electrodes 49 3.2.2 Trimming of electrode sheets 50 3.2.3 Assembly of batteries 50 3.3 Cycle life test of lithium ion batteries 51 3.4 Morphology study 57 3.5 Electrochemical impedance analysis 59 Chapter 4. Conclusions 61 Chapter 5: Experimental section 62 5.1 General Procedures 62 5.2 Synthesis of cyclopentadithiophene (CPDT) 63 5.2.1 Bis(2-iodothiophen-3-yl) methanol (1) 63 5.2.2 Bis(2-iodothiophen-3-yl)methanone (2) 64 5.2.3 Cyclopenta[2,1-b;3,4-b']dithiophen-4-one (3) 64 5.2.4 4H-Cyclopenta[2,1-b;3,4-b']dithiophene (4) 65 5.2.5 4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b']dithiophene (5) 65 5.3 Synthesis of polymers 67 5.3.1 P(CPDT-MB) 67 5.3.2 P(EDOT-MB) 67 5.3.3 P(EDOT-CPDT-MB) 68 5.3.4 P(EDOT-F-MB) 68 5.3.5 P(CPDT-F-MB) 68 5.3.6 P(EDOT-CPDT-F-MB) 69 5.3.7 P[CPDT-MB(COOH)] 69 5.3.8 P[EDOT-CPDT-MB(COOH)] 70 5.3.9 P[CPDT-F-MB(COOH)] 71 5.3.10 P[EDOT-CPDT-F-MB(COOH)] 71 References 76

    References
    1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters. 1977, 39, 1098
    2. Inzelt, György, "Chapter 1: Introduction". In Scholz, F. Conducting Polymers: A New Era in Electrochemistry, Springer, 2008.
    3. Naarmann, Herbert, "Polymers, Electrically Conducting", Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    4. Inzelt, György, "Chapter 8: Historical Background" In Scholz, F. Conducting Polymers: A New Era in Electrochemistry, Springer, 2008.
    5. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature. 1990, 347, 539.
    6. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck. Nature. 1999, 397, 121.
    7. G. Horowitz, Adv. Mater. 1998, 10, 365.
    8. Z. Bao, J. A. Rogers, H. E. J. Katz, Mater. Chem. 1999, 9, 1895.
    9. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    10. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
    11. B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
    12. U. Kasavajjula, C. Wang, Jurnal of Power Sources. 2007, 163, 1003
    13. M. N. Obrovacz and L. Christensen, Electrochem. Solid-State Lett. 2004, 151(6), A838
    14. J. Li, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A156.
    15. B. A. Boukamp, G. C. Lesh, R. A. Huggins, J. Electrochem. Soc. 1981, 128, 725.
    16. J. H. Ryu, J. W. Kim, Y. E. Sung, S. M. Oh, Electrochem. Solid-State Lett. 2004, 7, A306.
    17. M. N. Obrovac, L. J. Krause, J. Electrochem. Soc. 2007, 154, A103.
    18. J. Christensen, J. Newman, J. Solid State Electrochem. 2006, 10, 293.
    19. S. Renganathan, G. Sikha, S. Santhanagopalan, R. E. White, J. Electrochem. Soc. 2010, 157, A155
    20. C. K. Chan , H. L. Peng , G. Liu , K. McIlwrath , X. F. Zhang , R. A. Huggins , Y. Cui , Nat. Nano. 2008, 3, 31.
    21. A. Magasinski , P. Dixon , B. Hertzberg , A. Kvit , J. Ayala , G. Yushin , Nat. Mater. 2010, 9, 353.
    22. W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, N. L. Wu, Electrochem. Solid-State Lett. 2005, 8, A100.
    23. N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, M. Winter, Electrochem. Solid-State Lett. 2008, 11, A76.
    24. J. Li, D.-B. Le, P. P. Ferguson, J. R. Dahn, Electrochim. Acta 2010, 55, 2991.
    25. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Energy & Environmental Science, 2 (2009) 638.
    26. L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, Y. Cui, Nano Lett. 2009, 9, 491.
    27. R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, N. Koratka, Small 2009, 5, 2236.
    28. B. Kang, G. Ceder, Nature 2009, 458, 190.
    29. S. D. Beattie, D. M. Manolescu, S. L. Blair, J. Electrochem. Soc. 2009, 156, A44.
    30. J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. 2003, 6, A194.
    31. H. Kim, M. Seo, M. H. Park, J. Cho, Angew. Chem. Int. Ed. 2010, 49, 2146
    32. G. Liu, H. Zheng, S. Kim, Y. Deng, A. M. Minor, X. Song, V. S. Battaglia, J. Electrochem. Soc. 2008, 155, A887.
    33. G. Liu, H. Zheng, A. S. Simens, A. M. Minor, X. Song, V. S. Battaglia, J. Electrochem. Soc. 2007, 154, A1129.
    34. S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, J. M. Tarascon, J. Electrochem. Soc. 2008, 155, A158
    35. G. Liu, S. Xun, X. Song, H. Zheng, V. S. Battaglia, L. Wang, W. Yang, Adv. Mater. 2011, 23, 4679.
    36. T. R. Jow, L. W. Shacklette, J. Electrochem. Soc. 1988, 135, 541
    37. Z. J Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui, S. Komaba, Energy Environ. Sci. 2012, 5, 9014.
    38. J. C. Guo, C. S. Wang, Chem. Commun. 2010, 46, 1428
    39. C. Wang, H. Wu, Y. Cui, Z. Bao, Nature Chemistry 2013, 5, 1042
    40. Y. C. Yen, S. C. Chao, H. C. Wu, N. L. Wu, J. Electrochem. Soc. 2009, 156, A95.
    41. L. B. Chen, K. Wang, X. H. Xie, J. Y. Xie, J. Power Sources 2007, 174, 538.
    42. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 965.
    43. S. Dalavi, P. Guduru, B. L. Lucht, J. Electrochem. Soc. 2012, 159, A642.
    44. N. Miyaura, Cross-Coupling Reactions: A Practical Guide, Springer, New York, 2002.
    45. J. K. Stille, Angew. Chem. 1986, 98, 504; Angew. Chem. nt. Ed. Engl. 1986, 25, 508.
    46. T. N. Mitchell, Synthesis 1992, 803.
    47. D. Azarian, S. S. Dua, C. Eaborn, D. R. M. Walton, J. Organomet. Chem. 1976, 117, C55.
    48. D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
    49. V. Farina, V. Krishnamurthy, W. K. Scott, Organic Reactions, Vol. 50, Wiley, New York, 1997.
    50. Z. Bao, W. K. Chan, L. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
    51. P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704.
    52. a) K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, VCH, Weinheim, 1996; b) K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH, Weinheim, 2003.
    53. M. A. J. Duncton, G. Pattenden, J. Chem. Soc. Perkin Trans. 1 1999, 1235.
    54. J. A. Ragan, J. W. Raggon, P. D. Hill, B. P. Jones, R. E. McDermott, M. J. Munchhof, M. A. Marx, J. M. Casavant, B. A. Cooper, J. L. Doty, Y. Lu, Org. Process Res. Dev. 2003, 7, 676
    55. N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 1979, 866.
    56. T. Ishiyama, N. Matsuda, N. Miyaura, A. Suzuki, J. Am. Chem. Soc. 1993, 115, 11018.
    57. T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508.
    58. M. Murata, S. Watanabe, Y. Masuda, J. Org. Chem. 1997, 62, 6458.
    59. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
    60. V. Farina, V. Krishnamurthy, W. J. Scott, Organic Reactions, Wiley, New York, 1997.
    61. A. Suzuki, J. Organomet. Chem. 1999, 576, 147.
    62. R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.
    63. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976; Angew. Chem. Int. Ed. 2009, 48, 9792.
    64. A. Facchetti, L. Vaccaro, A. Marrocchi, Angew. Chem. Int. Ed. 2012, 51, 3520.
    65. M. Sévignon, J. Papillon, E. Schulz, M. Lemaire, Tetrahedron Lett. 1999, 40, 5873.
    66. M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496.
    67. Q. Wang, R. Takita, Y. Kikuzaki, F. Ozawa, J. Am. Chem. Soc. 2010, 132, 11420.
    68. S. Kowalski, S. Allard, U. Scherf, ACS Macro Lett. 2012, 1, 465.
    69. W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi,T. Kanbara, Macromolecules 2012, 45, 4128.
    70. A. Najari, P. Berrouard, C. Ottone, M. Boivin, Y. Zou,D. Gendron, W. O. Caron, P. Legros, C. N. Allen, S. Sadki, M. Leclerc, Macromolecules 2012, 45, 1833.
    71. P. Coppo, M. L. Turner, J. Mater. Chem. 2005, 15, 1123.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE