研究生: |
黃建彰 Huang, Jian-Zhang |
---|---|
論文名稱: |
以全正色散摻鐿光纖雷射產生似噪音脈衝之放大與色散控制 Amplification and Dispersion Control of Noise-like Pulses Generated by an ANDi Yb-fiber Laser |
指導教授: |
潘犀靈
Pan, Ci-Ling 吳小華 Wu, Hsiao-Hua |
口試委員: |
施宙聰
Shy, Jow-Tsong 林家弘 Lin, Ja-Hon |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 全正色散光纖雷射 、摻鐿光纖放大器 、似噪音脈衝 、保偏光纖 |
外文關鍵詞: | All-normal dispersion fiber laser, Yb-doped fiber amplifier, Noise-like pulses, Polarization maintaining fibers |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
似噪音脈衝具有光滑且寬頻的光譜、皮秒及飛秒兼具的雙尺度脈衝寬度和在時域上振幅隨機變化的脈衝陣列等獨特性質,為了更進一步了解似噪音脈衝的行為並發展其應用,我們使用全正色散摻鐿光纖雷射振盪器並連結全保偏光纖放大器,振盪器可產生輸出功率為173毫瓦、雙尺度脈衝寬度分別為13皮秒及312飛秒、且頻譜寬度為18.23奈米的似噪音脈衝。除此之外,我們安置一色散延遲器於雷射腔外來研究似噪音脈衝的色散性質。實驗結果顯示,似噪音脈衝的基底和較窄的內部結構均可於時域上被壓縮,最佳的壓縮雙尺度脈衝寬度分別是4.75皮秒及226飛秒,其對應的壓縮比率分別為2.68和1.38,而脈衝內部結構的時間-頻寬乘積為0.684,接近高斯波形的最短脈衝 (transform-limited pulse)。在放大過程中,不同泵浦功率下的光譜寬度維持約20奈米。最終我們定性的解釋實驗結果。
Noise-like pulse (NLP) presents unique features such as smooth and broadband optical spectra, double-scale intensity autocorrelation (AC) traces and stochastic amplitude of pulse trains in the time domain. To further comprehend the behavior of noise-like pulse for applications, we utilized an all-normal dispersion (ANDi) Yb-fiber laser followed by fiber amplifier stage using polarization-maintaining (PM) fibers. The oscillator generated noise-like pulses with pedestal width of 13 ps, spike width of 312 fs and spectral width of 18.23 nm. The average output power was 173 mW. Additionally, a dispersive delay line (DDL) outside the cavity was employed to study the dispersion properties of noise-like pulses. The results revealed that the temporal compression of pedestal and coherent spike of noise-like pulses is feasible. The best-compressed width of pedestal and spike were 4.85 ps and 226 fs, with the compression ratio of 2.68 and 1.38, respectively. The estimated time-bandwidth product (TBP) of coherent spike was 0.684, which is close to the transform-limited pulse of Gaussian profile. During amplification, the spectral width remained ~20 nm for different pump powers. Finally, the experimental results have been qualitatively explained.
[1] C. J. Koester and E. Snitzer, "Amplification in a fiber laser," Applied optics, vol. 3, pp. 1182-1186, 1964.
[2] J. Stone and C. Burrus, "Neodymium-doped fiber lasers: room temperature cw operation with an injection laser pump," Applied Optics, vol. 13, pp. 1256-1258, 1974.
[3] W. Barnes, S. B. Poole, J. Townsend, L. Reekie, D. Taylor, and D. N. Payne, "Er/sup 3+/-Yb/sup 3+/and Er/sup 3+/doped fiber lasers," Journal of Lightwave Technology, vol. 7, pp. 1461-1465, 1989.
[4] R. J. Mears, L. Reekie, I. Jauncey, and D. N. Payne, "Low-noise erbium-doped fibre amplifier operating at 1.54 μm," Electronics Letters, vol. 23, pp. 1026-1028, 1987.
[5] E. Desurvire, J. R. Simpson, and P. Becker, "High-gain erbium-doped traveling-wave fiber amplifier," Optics Letters, vol. 12, pp. 888-890, 1987.
[6] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, Jul 1997.
[7] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. McCollum, "Double clad, offset core Nd fiber laser," in Optical fiber sensors, 1988, p. PD5.
[8] Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power," in Advanced Solid-State Photonics, 2004, p. PDP13.
[9] Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. Hickey, et al., "Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 546-551, 2007.
[10] O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics, vol. 50, pp. E24-E31, 2011.
[11] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers," Optics Express, vol. 17, pp. 20707-20713, 2009.
[12] Y. An, D. Shen, W. Zhao, and J. Long, "Characteristics of pulse evolution in mode-locked thulium-doped fiber laser," Optics Communications, vol. 285, pp. 1949-1953, 2012.
[13] L. Zhao, D. Tang, J. Wu, X. Fu, and S. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics express, vol. 15, pp. 2145-2150, 2007.
[14] M. J. Digonnet, Rare-earth-doped fiber lasers and amplifiers, revised and expanded: CRC press, 2001.
[15] S. Kobtsev, S. Smirnov, S. Kukarin, and S. Turitsyn, "Mode-locked fiber lasers with significant variability of generation regimes," Optical Fiber Technology, vol. 20, pp. 615-620, 2014.
[16] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Optics letters, vol. 22, pp. 799-801, 1997.
[17] Y.-J. You, C. Wang, Y.-L. Lin, A. Zaytsev, P. Xue, and C.-L. Pan, "Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses," Laser Physics Letters, vol. 13, p. 025101, 2015.
[18] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics express, vol. 21, pp. 16056-16062, 2013.
[19] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Optics express, vol. 20, pp. 27447-27453, 2012.
[20] J.-H. Lin, C.-L. Chen, C.-W. Chan, W.-C. Chang, and Y.-H. Chen, "Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism," Optics letters, vol. 41, pp. 5310-5313, 2016.
[21] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses," Optics Express, vol. 22, pp. 4152-4160, 2014/02/24 2014.
[22] J. Cheng, C.-s. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, et al., "A review of ultrafast laser materials micromachining," Optics & Laser Technology, vol. 46, pp. 88-102, 2013.
[23] T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, "Corneal refractive surgery with femtosecond lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 902-910, 1999.
[24] N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, et al., "NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging," ACS nano, vol. 5, pp. 8665-8671, 2011.
[25] V. Matsas, T. Newson, D. Richardson, and D. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electron. Lett, vol. 28, pp. 1391-1393, 1992.
[26] M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, "Mode locking with cross-phase and self-phase modulation," Optics Letters, vol. 16, pp. 502-504, 1991/04/01 1991.
[27] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, p. 576, 2002.
[28] R. Oron and A. A. Hardy, "Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers," Journal of the Optical Society of America B, vol. 16, pp. 695-701, 1999/05/01 1999.
[29] Z. Li, X. S. Yao, X. Chen, H. Chen, Z. Meng, and T. Liu, "Complete characterization of polarization-maintaining fibers using distributed polarization analysis," Journal of Lightwave Technology, vol. 33, pp. 372-380, 2015.
[30] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, 1928.
[31] R. H. Stolen, E. Ippen, and A. Tynes, "Raman oscillation in glass optical waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972.
[32] E. Ippen and R. Stolen, "Stimulated Brillouin scattering in optical fibers," Applied Physics Letters, vol. 21, pp. 539-541, 1972.
[33] F. Shimizu, "Frequency broadening in liquids by a short light pulse," Physical Review Letters, vol. 19, p. 1097, 1967.
[34] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, pp. 699-701, May 1 1993.
[35] D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, "Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity," Optics express, vol. 17, pp. 18774-18781, 2009.
[36] M. C. Teich and B. Saleh, "Fundamentals of photonics," Wiley Interscience, vol. 3, 1991.
[37] E. Treacy, "Optical pulse compression with diffraction gratings," Quantum Electronics, IEEE Journal of, vol. 5, pp. 454-458, 1969.
[38] A. Johnson, R. Stolen, and W. Simpson, "80× single‐stage compression of frequency doubled Nd: yttrium aluminum garnet laser pulses," Applied Physics Letters, vol. 44, pp. 729-731, 1984.
[39] A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Optics Express, vol. 14, pp. 10095-10100, 2006/10/16 2006.
[40] A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," JOSA B, vol. 25, pp. 140-148, 2008.
[41] E. Treacy, "Optical pulse compression with diffraction gratings," IEEE Journal of quantum Electronics, vol. 5, pp. 454-458, 1969.
[42] Thorlabs. Near-IR Ruled Reflective Diffraction Gratings. Available: https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=8627