簡易檢索 / 詳目顯示

研究生: 陳季丞
Cheng, Chen Chi
論文名稱: 脈衝塑型器輔助之超快任意光波形量測與組合
Shaper-assisted ultrafast optical arbitrary waveform characterization and synthesis
指導教授: 楊尚達
口試委員: 孔慶昌
陳明彰
許佳振
項維巍
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 96
中文關鍵詞: 超短脈衝量測全向量光場量測脈衝塑型
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 任意光波形可藉由對脈衝光譜的每一根譜線做獨立之振幅、相位之調變而達成,此一技術可在時域上實現100%工作週期之光脈衝序列。若更進一步對脈衝的兩個正交電場成分做獨立之振幅、相位調變,則可以將純量場任意光波形推廣至具有時變極化態之向量場任意光波形。除了達成理論上光場複雜度的極限,這類光場可用於具飛秒級時間解析度及奈米級空間解析度之電漿子元件選擇性激發。
    傳統上純量場或向量場超短脈衝的量測可藉由產生ㄧ對孤立的相同脈衝做時間取樣或頻譜干涉。然而工作週期達100%之任意光波形無法在時域上完全分離,增加了量測的困難。已發展的量測技術需使用轉換極限脈衝或同步射頻訊號等參考訊號來輔助量測。然而轉換極限脈衝取得不易,且量測超高重複率脈衝序列(如重複率為1011赫茲之刻爾光頻梳)時,射頻訊號會有頻寬不足的問題。
    本論文致力於使用全光學技術,在不需冗長的迭代演算法與高速電子元件之下量測及合成任意光波型。所發展之脈衝塑型器輔助量測系統容易精確校正系統參數、具有極佳的量測準確度、且將量測及合成整合為單一系統。實驗架構適用於極限紫外光波段,並可應用於量測超高重複率脈衝序列。


    Integration of optical frequency comb and spectral line-by-line pulse shaping can generate optical arbitrary waveform (OAW) with ultrafast evolution of amplitude and phase spanning up to the entire repetition period (100% duty cycle). By independently controlling the electric fields at two orthogonal polarizations, one could generalize the OAW to vectorial OAW (V-OAW) with time-varying state of polarization (SOP). This is supposed the optical field of extreme complexity in the time/frequency domain, and is expected to have unique applications in ultrafast plasmonics.
    However, the requirement of creating two isolated pulse replicas in conventional ultrashort pulse measurement techniques, such as frequency-resolved optical gating (FROG), spectral phase interferometry for direct electric-field reconstruction (SPIDER), or tomographic ultrafast retrieval of transverse light E-fields (TURTLE) prevents them from being useful in OAW or V-OAW measurement. A limited number of measurement techniques are OAW or V-OAW compatible but subject to the requirements of a synchronized well-characterized optical reference, a synchronized radio-frequency (RF) reference, high-speed electronics, or large data redundancy and iterative algorithm. The usefulness of these methods could be compromised when the required optical or RF reference is unavailable, the system does not have interferometric stability, or the frequency comb spacing is larger than the attainable electronic bandwidth (e.g. 100 GHz).
    In this dissertation, we proposed and experimentally demonstrated a couple of methods that can characterize as well as synthesize OAW or V-OAW without measurement ambiguity or requirements of interferometric stability, high-speed electronics, or iterative data inversion. The transform-limited pulse duration is 2.5 ps for the used comb source. They can be applied to attosecond extreme ultraviolet (EUV) pulse measurement and intensity repetition rate multiplication of a scalar or vectorial pulse train via temporal Talbot effect.

    CHAPTER 1 INTRODUCTION 1 1.1 OAW generation 5 1.2 Shaper-assisted pulse measurement techniques 8 CHAPTER 2 SHAPER-ASSISTED SCALAR FIELD MEASUREMENTS 11 2.1 Some shaper-assisted pulse measurement techniques 13 2.1-1 MIIPS 13 2.1-2 IA-based method 16 2.1-3 Shaper-assisted FROG 19 2.1-4 Polarization shper-assisted SPIDER 20 2.1-5 Shaper-assisted MIFA 22 2.2 DQ-SI 24 2.3 Non-iterative PROOF 28 2.3-1 Standard PROOF method 28 2.3-2 Theory 30 2.3-3 Simulation 33 2.3-4 Noise effect. 35 2.3-5 Experiment. 38 2.4 Polarization-shaper assisted DQ-SSI 42 2.4-1 Theory 42 2.4-2 Experiment 44 2.4-3 Power distribution between probes and signal 48 CHAPTER 3 SHAPER-ASSISTED VECTORIAL FIELD MEASUREMENT 51 3.1 Introduction 51 3.1-1 Vector field representation 51 3.1-2 Polarization characterization using temporal technique. 54 3.1-3 SOP characterization using spectral technique. 55 3.2 TURTLE 57 3.1-1 Iterative FROG-TURTLE 58 3.1-2 Existing analytic TURTLE 63 3.1-3 New analytic TURTLE 66 3.3 Four step method 68 3.4 VECTOR. 72 3.4-1 Theory and experimental setup. 72 3.4-1 Arbitrary V-OAW measurement 74 3.4-2 Vectorial temporal Talbot effect measurement 76 3.4-3 Accuracy of VECTOR confirmed by MIIPS-TURTLE 79 3.5 Application. 82 CHAPTER 4 CONCLUSION 85 4.1 Scalar field measurement 85 4.2 Vector field measurement 88 4.3 Perspective 89 APPENDIX 90 REFERENCES 92

    1. S. T. Cundiff, and A. M. Weiner, "Optical arbitrary waveform generation," Nature Photonics 4, 760-766 (2010).
    2. C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, "Spectral line-by-line shaping for optical and microwave arbitrary waveform generations," Laser & Photonics Reviews 2, 227-248 (2008).
    3. H.-P. Chuang, and C.-B. Huang, "Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper," Optics Express 18, 24003-24011 (2010).
    4. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, "Synthesis and Measurement of Ultrafast Waveforms from Five Discrete Optical Harmonics," Science 331, 1165-1168 (2011).
    5. Y. Silberberg, "Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy," in Annual Review of Physical Chemistry(2009), pp. 277-292.
    6. C.-C. Chen, I. C. Hsieh, S.-D. Yang, and C.-B. Huang, "Polarization line-by-line pulse shaping for the implementation of vectorial temporal Talbot effect," Optics Express 20, 27062-27070 (2012).
    7. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    8. G. Sansone, F. Ferrari, C. Vozzi, F. Calegari, S. Stagira, and M. Nisoli, "Towards atomic unit pulse duration by polarization-controlled few-cycle pulses," Journal of Physics B-Atomic Molecular and Optical Physics 42, 5 (2009).
    9. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strueber, and D. V. Voronine, "Spatiotemporal control of nanooptical excitations," Proceedings of the National Academy of Sciences of the United States of America 107, 5329-5333 (2010).
    10. B. von Vacano, T. Buckup, and M. Motzkus, "Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy," Journal of the Optical Society of America B-Optical Physics 24, 1091-1100 (2007).
    11. A. Galler, and T. Feurer, "Pulse shaper assisted short laser pulse characterization," Applied Physics B-Lasers and Optics 90, 427-430 (2008).
    12. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-h. Tseng, T. Weinacht, and M. Dantus, "Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses," Journal of the Optical Society of America B-Optical Physics 25, A140-A150 (2008).
    13. C.-S. Hsu, H.-C. Chiang, H.-P. Chuang, C.-B. Huang, and S.-D. Yang, "Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation," Optics Letters 36, 2611-2613 (2011).
    14. A. E. Paul, I. A. Bolger, A. L. Smirl, and J. G. Pellegrino, "Time-resolved measurements of the polarization state of four-wave mixing signals from GaAs multiple quantum wells," Journal of the Optical Society of America B-Optical Physics 13, 1016-1025 (1996).
    15. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Applied Physics B-Lasers and Optics 65, 277-294 (1997).
    16. S. X. Wang, and A. M. Weiner, "Fast wavelength-parallel polarimeter for broadband optical networks," Optics Letters 29, 923-925 (2004).
    17. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, "Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry," Optics Letters 22, 81-83 (1997).
    18. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, "Generation and characterization of polarization-shaped femtosecond laser pulses," Applied Physics B-Lasers and Optics 74, S133-S144 (2002).
    19. P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, "Tomographic retrieval of the polarization state of an ultrafast laser pulse," Optics Letters 33, 267-269 (2008).
    20. L. N. Xu, P. Schlup, O. Masihzadeh, R. A. Bartels, and R. Trebino, "Analysis of the measurement of polarization-shaped ultrashort laser pulses by tomographic ultrafast retrieval of transverse light E fields," Journal of the Optical Society of America B-Optical Physics 26, 2363-2369 (2009).
    21. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Review of Scientific Instruments 68, 3277-3295 (1997).
    22. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, "OPTICAL PULSE-COMPRESSION USING HIGH-FREQUENCY ELECTROOPTIC PHASE MODULATION," Ieee Journal of Quantum Electronics 24, 382-387 (1988).
    23. J. Azana, and M. A. Muriel, "Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates," Ieee Journal of Selected Topics in Quantum Electronics 7, 728-744 (2001).
    24. C. B. Huang, and Y. C. Lai, "Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering," Ieee Photonics Technology Letters 12, 167-169 (2000).
    25. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform characterization via dual-quadrature spectral interferometry," Optics Express 17, 25-33 (2009).
    26. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. W. Wang, and Z. H. Chang, "Tailoring a 67 attosecond pulse through advantageous phase-mismatch," Optics Letters 37, 3891-3893 (2012).
    27. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Optics Letters 29, 775-777 (2004).
    28. M. Ninck, A. Galler, T. Feurer, and T. Brixner, "Programmable common-path vector field synthesizer for femtosecond pulses," Optics Letters 32, 3379-3381 (2007).
    29. C.-C. Chen, C.-B. Huang, S.-D. Yang, "Polarization shaper-assisted SPIDER," Optics and Photonics Taiwan, International Conference 2012, Taipei, Taiwan, (2012).
    30. S. D. Yang, C. S. Hsu, S. L. Lin, Y. S. Lin, C. Langrock, and M. M. Fejer, "Ultrasensitive direct-field retrieval of femtosecond pulses by modified interferometric field autocorrelation," Optics Letters 34, 3065-3067 (2009).
    31. H. X. Miao, S. D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, "Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides Invited," Journal of the Optical Society of America B-Optical Physics 25, A41-A53 (2008).
    32. M. Chini, S. Gilbertson, S. D. Khan, and Z. H. Chang, "Characterizing ultrabroadband attosecond lasers," Optics Express 18, 13006-13016 (2010).
    33. I. Kang, and C. Dorrer, "Method of optical pulse characterization using sinusoidal optical phase modulations," Optics Letters 32, 2538-2540 (2007).
    34. D. N. Fittinhoff, K. W. Delong, R. Trebino, and C. L. Ladera, "NOISE SENSITIVITY IN FREQUENCY-RESOLVED OPTICAL-GATING MEASUREMENTS OF ULTRASHORT PULSES," Journal of the Optical Society of America B-Optical Physics 12, 1955-1967 (1995).
    35. H. X. Miao, D. E. Leaird, C. Langrock, M. M. Fejer, and A. M. Weiner, "Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry," Optics Express 17, 3381-3389 (2009).
    36. F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, "Spectral line-by-line pulse shaping of on-chip microresonator frequency combs," Nature Photonics 5, 770-776 (2011).
    37. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    38. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, "Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer," Applied Optics 45, 8354-8359 (2006).
    39. M. Sato, T. Suzuki, and K. Misawa, "Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping," Review of Scientific Instruments 80 (2009).
    40. P. M. Krummrich, E.-D. Schmidt, W. Weiershausen and A. Mattheus, "Field trial results on statistics of fast polarization changes in long haul WDM transmission systems", Conference on Optical Fiber Communication (OFC 2005), Mar. 6 – 11, Los Anaheim, CA, USA, OthT6
    41. S. X. Wang, and A. M. Weiner, "A complete spectral polarimeter design for lightwave communication systems," Journal of Lightwave Technology 24, 3982-3991 (2006).
    42. P. Schlup, and R. A. Bartels, "Impact of Measurement Noise in Tomographic Ultrafast Retrieval of Transverse Light E-Fields (TURTLE) Ultrashort Polarization Characterization," Ieee Photonics Journal 1, 163-171 (2009).
    43. A. M. Weiner, "EFFECT OF GROUP-VELOCITY MISMATCH ON THE MEASUREMENT OF ULTRASHORT OPTICAL PULSES VIA 2ND HARMONIC-GENERATION," Ieee Journal of Quantum Electronics 19, 1276-1283 (1983).
    44. C. C. Chen, C. B. Huang, and S. D. Yang, "Self-referenced frequency comb measurement by using a polarization line-by-line pulse shaper," Optics Letters 39, 1901-1904 (2014).
    45. P. Antoine, A. Lhuillier, and M. Lewenstein, "Attosecond pulse trains using high-order harmonics," Physical Review Letters 77, 1234-1237 (1996).
    46. M. Chini, K. Zhao, and Z. H. Chang, "The generation, characterization and applications of broadband isolated attosecond pulses," Nature Photonics 8, 178-186 (2014).
    47. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, and J. A. Arnaud, "NEW METHOD FOR MEASURING IMPULSE-RESPONSE OF OPTICAL FIBERS," Applied Optics 19, 3749-3755 (1980).
    48. S. D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, "Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 mu m," Optics Letters 30, 2164-2166 (2005).
    49. L.-F. Yang, S.-L. Lin, and S.-D. Yang, "Ultrashort pulse measurements by interferometric spectrogram," Optics Express 18 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE