研究生: |
李昇翰 Li, Sheng-Hann |
---|---|
論文名稱: |
網頁中之聽覺回饋對使用者感知及可用性之影響 The Effect of Auditory Feedback on Websites Users’ Perception of Website Usability |
指導教授: |
黃雪玲
Hwang, Sheue-Ling |
口試委員: |
李英聯
Lee, Ying-Lien 梁國鋒 Liang, Guo-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 網頁介面設計 、耳標 、聽覺回饋 、煩躁 |
外文關鍵詞: | Website interface design, earcons, auditory feedback, annoying |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今的網頁上著重在視覺回饋的使用,但聽覺回饋的使用有越來越多的趨勢,與視覺回饋的研究相比,聽覺回饋是比較少人去注意的,主要偏重在如何設計出一個好的聽覺回饋,很少有研究去觀察聽覺回饋與使用情境之間的關係,或許聽覺回饋本身是好的,但在某些情境卻是不必要的,而造成使用者的煩躁或是分心,因此本研究主要是要探討情境與聽覺回饋之間的關係。
在本研究中,我們設計了一個網站UN.com,此網站有三個場景和五個不同的聽覺回饋,使用的聽覺回饋均遵照準則設計,自變數為聽覺回饋的發生次數或開始時間,依變數為受試者的煩躁和輔助程度。實驗共分成兩個階段,在第一個階段實驗,找出各種聽覺回饋在何種情境最適合使用,第二階段實驗,則利用第一階段實驗的結果,重新設計出一個網站並驗證聽覺回饋與可用性的關係,
本研究的問卷一共分成三個部分,第一部分為調查受試者的個人基本資料,第二部分為利用主觀問卷調查聽覺的幫助程度和煩躁程度,第三個部分是系統可用性量表,主要作用是探討聽覺回饋對於受試者的煩躁和輔助程度以及網站可用性的影響。
我們發現聽覺回饋會顯著的影響網站的可用性,且聽覺回饋的發生次數過多也會產生不好的影響,例如滑入音的發生次數,如果次數超過五次就會產生煩操的情形,第二階段的實驗中,成功驗證聽覺回饋與可用性之間的關係;本研究詳細的探討過去研究所沒考慮到的一些細節,結果我們希望可以提供建議給未來的設計者參考來避免聽覺回饋所造成的負面影響。
Often, the only feedback that the user receives in websites is visual feedback. In comparison with visual feedback, for which there have been many empirical studies, exploration of sound has been slower, but the use of sound in websites is becoming increasingly popular due to the potential benefits it offers, and there is a great deal of general literature on how to design auditory feedback. However, scant specific guidance is available on the relationship between auditory feedback and situation. When providing unnecessary feedback, auditory feedback becomes noise that distracts the user from the task. Thus, the major purpose of this study was to investigate the role of situation in auditory feedback.
In this investigation, we designed a website named UN.com that has three scenes and added different numbers of auditory feedback types. The independent variable was the different numbers of auditory feedback types. The dependent variable was the degree of helpfulness and annoyance. All of the earcons and auditory icons followed appropriate guidelines.
A two-phase experiment was designed to explore the application of auditory feedback. In the first phase, the better situation in which to use auditory feedback was determined. In the second phase, a redesigned website was verified. The questionnaire consisted of three sections, the first intended to elicit demographic information from the respondents. The second section asked respondents to rate their accepted degree of auditory feedback. In the last section, we modified the system usability scale (SUS) for suitable auditory feedback to focus on the usability of auditory feedback.
We found a significant correlation between auditory feedback and website usability. Some auditory feedback emerging more frequently may have a negative effect. For example, the slip sound could be annoying when the number of occurrence exceed five times. In the last phase of the experiment, we achieved the best score in SUS. The present study enhances previous studies’ finding by providing a much more detailed examination of auditory feedback. The results may provide web designers with guidelines for auditory feedback to prevent negative effects.
Andersen, T. H., & Zhai, S. (2010). “Writing with music”: Exploring the use of auditory feedback in gesture interfaces. ACM Transactions on Applied Perception (TAP), 7(3), 17.
Arroyo, E., Bonanni, L., & Selker, T. (2005, April). Waterbot: exploring feedback and persuasive techniques at the sink. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 631-639). ACM.
Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. Intl. Journal of Human–Computer Interaction, 24(6), 574-594.
Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies,4(3), 114-123.
Ballas, J. A. (1993). Common factors in the identification of an assortment of brief everyday sounds. Journal of experimental psychology: human perception and performance, 19(2), 250.
Belojevic, G., Jakovljevic, B., & Slepcevic, V. (2003). Noise and mental performance: personality attributes and noise sensitivity. Noise and Health,6(21), 77.
Blattner, M. M., Sumikawa, D. A., & Greenberg, R. M. (1989). Earcons and icons: Their structure and common design principles. Human–Computer Interaction, 4(1), 11-44.
Boman, E., Enmarker, I., & Hygge, S. (2005). Strength of noise effects on memory as a function of noise source and age. Noise and Health, 7(27), 11.
Brewster, S. A., Wright, P. C., & Edwards, A. D. (1993, May). An evaluation of earcons for use in auditory human-computer interfaces. In Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems(pp. 222-227). ACM.
Brewster, S. A. (1997). Using non-speech sound to overcome information overload. Displays, 17(3), 179-189.
Brewster, S. (1998). Using earcons to improve the usability of a graphics package. In People and Computers XIII (pp. 287-302). Springer London.
Clausen, T., Christensen, K. B., Lund, T., & Kristiansen, J. (2009). Self-reported noise exposure as a risk factor for long-term sickness absence. Noise & health,11(43).
Chebat, J. C., Chebat, C. G., & Vaillant, D. (2001). Environmental background music and in-store selling. Journal of Business Research, 54(2), 115-123.
Ding, C. G., & Lin, C. H. (2012). How does background music tempo work for online shopping?. Electronic Commerce Research and Applications, 11(3), 299-307.
E. Boman, I. Enmarker and S. Hygge, Strength of noise effects on memory as a function of noise source and age, Noise and Health 7 (2005), 11-26
Fogg, B. J. (1998, January). Persuasive computers: perspectives and research directions. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 225-232). ACM Press/Addison-Wesley Publishing Co..
Gaver, W. W., & Smith, R. B. (1991). Auditory icons in large-scale collaborative environments. ACM SIGCHI Bulletin, 23(1), 96.
Graham, R. (1999). Use of auditory icons as emergency warnings: evaluation within a vehicle collision avoidance application. Ergonomics, 42(9), 1233-1248.
Gomez, P., & Danuser, B. (2004a). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53, 91–103
Gomez, P., & Danuser, B. (2007). Relationships between musical structure and psychophysiological measures of emotion. Emotion, 7(2), 377.
Haas, F., Distenfeld, S., & Axen, K. (1986). Effects of perceived musical rhythm on respiratory pattern. Journal of Applied Physiology, 61, 1185–1191.
Hermann, T., Hunt, A., Neuhoff, J. G., editors (2011). The Sonification Handbook. Logos Publishing House, Berlin,
Germany Hodges, D. A. (1996). Human musicality. In D. A. Hodges (Ed.), Handbook of music psychology (pp. 29–68). San Antonio, TX: IMR Press
Huang, R. H., & Shih, Y. N. (2011). Effects of background music on concentration of workers. Work: A Journal of Prevention, Assessment and Rehabilitation, 38(4), 383-387.
Karshmer, A. I., Brawner, P., & Reiswig, G. (1994, October). An experimental sound-based hierarchical menu navigation system for visually handicapped use of graphical user interfaces. In Proceedings of the first annual ACM conference on Assistive technologies (pp. 123-128). ACM.
Lumsden, J., Brewster, S., Crease, M., & Gray, P. D. (2002). Guidelines for audio-enhancement of graphical user interface widgets. In proceedings of BCS HCI.
McGookin, D. K., & Brewster, S. A. (2004). Understanding concurrent earcons: Applying auditory scene analysis principles to concurrent earcon recognition.ACM Transactions on Applied Perception (TAP), 1(2), 130-155.
Mynatt, E. D. (1994, April). Designing with auditory icons: how well do we identify auditory cues?. In Conference companion on Human factors in computing systems (pp. 269-270). ACM.
North, A. C. (2012). The effect of background music on the taste of wine. British Journal of Psychology, 103(3), 293-301.
Shih, Y. N., Huang, R. H., & Chiang, H. Y. (2012). Background music: Effects on attention performance. Work: A Journal of Prevention, Assessment and Rehabilitation, 42(4), 573-578.
Sumikawa, D. A. (1985). Guidelines for the integration of audio cues into computer user interfaces (No. UCRL-53656).
Walker, B. N., Nance, A., & Lindsay, J. (2006, June). Spearcons: Speech-based earcons improve navigation performance in auditory menus. In Proceedings of the International Conference on Auditory Display, London, UK (pp. 63-68).
Williamson, J., Murray-Smith, R., & Hughes, S. (2007, April). Shoogle: excitatory multimodal interaction on mobile devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 121-124). ACM.
Yeoh, J. P. S., & North, A. C. (2010). The effects of musical fit on choice between two competing foods. Musicae Scientiae, 14, 127–138.
Zhu, R., & Meyers-Levy, J. (2005). Distinguishing between the meanings of music: When background music affects product perceptions. Journal of Marketing Research, 42(3), 333-345.
Andersen, T. H., & Zhai, S. (2010). “Writing with music”: Exploring the use of auditory feedback in gesture interfaces. ACM Transactions on Applied Perception (TAP), 7(3), 17.