簡易檢索 / 詳目顯示

研究生: 何佳琪
Ho, Chia-Chi
論文名稱: 探討氣管灌注量子點(QD705)在小鼠所誘發的肺部病變及其誘發機制
Safety assessment for intratracheal instillation of cadmium-based quantum dots (QD705) in mice and understanding the mechanisms in macrophage
指導教授: 凌永健
Ling, Yong-Chien
林嬪嬪
Lin, Pinpin
口試委員: 劉宗榮
Liu, Tsung-Yun
莊宗顯
Chuang, Tsung-Hsien
陳仁焜
Chen, Jen-Kun
林立元
Lin, Lih-Yuan
張兗君
Chang, Yen-Chung
林嬪嬪
Lin, Pinpin
凌永健
Ling, Yong-Chien
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 146
中文關鍵詞: 量子點發炎肺臟肉芽腫
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子點奈米粒子具有穩定的螢光性質,因此許多量子點(quantum dots, QDs) 被研究如何應用在藥物運輸和生物醫學影像上,未來可進一步探討量子點應用於肺部的藥物運輸或肺部顯影之可能性,但是必須先評估其安全性及生物相容性。QD705是ㄧ種以金屬鎘為主要成分的量子點,本論文目的是評估QD705對小鼠肺臟的生物反應(包括生物相容度和分解情形),探討修飾聚乙二醇(PEG, Polyethylene Glycols)是否能降低QD705所引起之生物反應;再進一步利用細胞株探討QD705造成之生物效應的機制。首先,在小鼠實驗部分,經由氣管灌注60 g QD705-COOH一次,不論是在17和90天後,都會持續誘發大量嗜中性球累積於肺組織,進而伴隨肺泡間質發生淋巴球浸潤和肉芽腫(granuloma)等病變。小鼠暴露QD705-COOH 17天後,其肺組織中多種細胞激素、化學激素和金屬蛋白酶12 表現增加,小鼠的肺功能變差:而暴露QD705-PEG 17天的小鼠肺臟也發生類似病變及生物反應,不同的是在暴露90天之後,雖然發炎反應持續發生,但肉芽腫大部分已消失。以上結果顯示,QD705s會造成肺部嚴重的發炎反應且修飾聚乙二醇的量子點無法防止發炎反應。不論暴露QD705-COOH或 QD705-PEG,在90天內都仍以螢光顯微鏡觀察到量子點的螢光,顯示量子點未完全消失;進一步定量組織內量子點主要金屬成份鎘與銻,發現肺組織內鎘與銻濃度隨時間而下降,而鎘與銻濃度比例隨時間而上升,暗示量子點在肺組織逐漸被排除且已發生解離。
    接著,我們以在小鼠巨噬細胞(RAW264.7)為模式,探討量子點引起肺臟急性發炎之機轉。在小鼠巨噬細胞(RAW264.7)中QD705-COOH和QD705-PEG會經由MyD88 dependent Toll-like receptor (TLR)訊息路徑活化NF¬-B增加 monocyte chemotactic protein-1 (MCP-1)的表現量。MCP-1是一種化學激素,會誘發大量的巨噬細胞和單核球到發炎的部位。MyD88是大部分Toll-like receptors (TLRs)的訊息銜接子(adaptors),能進一步活化NF¬-B。以siRNA方式抑制MyD88和p65的表現,或共同處理NF¬-B抑制劑,都會抑制量子點(QD705s)活化NF¬-B和誘發MCP-1表現。TLRs分為兩大類: ㄧ類是分佈在細胞表面(例如TLR4);另一類則是分佈於細胞內的胞器上。共同處理TLR4抑制劑完全抑制QD705-PEG所誘發MCP-1的表現;但相反地,卻只抑制少部分QD705-COOH所誘發MCP-1的表現。進一步我們觀察到QD705-COOH會進入到細胞中,而共同處理內吞作用(endocytosis)或細胞內胞器上TLRs的抑制劑後,可以抑制QD705-COOH所誘發MCP-1的表現。根據上述結果得知,QD705s依據不同的表現修飾,會在細胞表面或細胞內活化MyD88 dependent Toll-like receptor (TLR)訊息路徑,其訊息路徑是量子點奈米粒子誘發發炎反應的主要機制。
    從本篇研究得知,氣管罐注量子點會使小鼠肺組織產生嚴重的發炎反應,大量巨噬細胞在肺組織浸潤,進而誘發許多與發炎相關基因增加,造成肉芽腫形成;可能因為量子點在巨噬細胞會經由活化MyD88 dependent Toll-like receptor (TLR)訊息路徑,活化NF¬-B進而,增加促進發炎的基因表現。因此QD705無法應用於肺部顯影或作為吸入性藥物之載體。這本篇研究中我們建立 奈米醫藥相關產品安全性評估的模式,包含奈米粒子在物理化學特性品質控制(Quality Control, QC)的分析檢測項目,以及未來能提供經由肺部暴露奈米粒子安全評估的方法建立,而協助將來奈米醫學產業發展。


    壹、 縮寫表 1 貳、 文獻綜論 一、 何謂奈米 4 二、 奈米的應用 4 三、 量子點 (1) 量子點的特性 5 (2) 量子點表面修飾的聚乙二醇(PEG) 6 (3) 量子點的應用 7 (4) 量子的毒性 8 四、 奈米粒子的危害及安全性 12 五、 奈米微粒對肺部的影響 12 六、 吸入性藥物 18 七、 肺部發炎及發炎反應指標 18 八、 肉芽腫 20 九、 肺功能 25 十、 肝功能及腎功能 26 十ㄧ、類鐸受體( Toll-like receptors , TLRs) 27 參、 研究動機 29 肆、 實驗材料 1.藥品 33 2.奈米粒子 33 3.試劑 34 4.實驗動物 34 5.細胞株 34 6. siRNA 35 7.質體 35 8.儀器 35 伍、 實驗方法 一、奈米粒子物化性質測定 36 二、凝膠式鱟試劑(Gel-clot Limulus amebocyte lysate, LAL) 36 三、微透析分析法(Microdialysis System) 36 四、動物實驗及設計37 五 肺泡沖洗液(bronchoalveolar lavage fluid, BALF)分析 38 六、LDH酵素活性分析 38 七、Total Protein 之含量 39 八、蘇木素-伊紅染色(Hematoxylin & Eosin stain)39 九、免疫組織化學染色(IHC) 39 十、Masson’s trichrome染色 40 十一、肺功能測定 40 十二、RNA抽取 40 十三、定量PCR (Real-time RT-PCR)41 十四、細胞培養 (cell culture)42 十五、MTT assay 43 十六、聚落形成能力分析法 (Colony formation) 43 十七、Cellular uptake of QD705s 44 十八、Lysotracker螢光染色 44 十九、Reporter gene assay 44 二十、RNA干擾 (RNA interference, RNAi) 45 二十ㄧ、酵素連結免疫吸附分析法 (ELISA) 45 二十二、統計分析 45 陸、 實驗結果 第一部分、探討量子點(QD705s)在小鼠肺組織中的生物相容度(biocompatibility)和分解情形(biodegration) 一、 奈米粒子的物化性質 47 二、 暴露奈米粒子後,由老鼠肺泡沖洗液偵測肺部發炎現象及肺部 損傷的情形 47 三、 暴露奈米粒子後觀察肺組織的病理變化 48 四、 暴露量子點後,肺組織中MMP12、F4/80蛋白表現的情形 49 五、 暴露量子點17和90天後對肺功能的影響 50 六、 暴露量子點17天後觀察肺組織是否有纖維化的情形 51 七、 暴露量子點90天後是否影響肝功能和腎功能 51 八、 暴露奈米粒子後觀察肺組織的基因表現變化 51 九、 暴露量子點後觀察肺組織中Metallothionein (MT)蛋白表現的 差別情形 53 十、 暴露量子點後測定肺組織中Cd和Te的含量 53 第二部分、在巨噬細胞(RAW264.7)中探討量子點(QD705s)所造成肺組織不良 反應之生物機制(mechanism)為何 一、 探討奈米粒子的細胞毒性 55 二、 探討量子點(QD705s)對於氧化壓力(ROS)之影響 55 三、 探討量子點(QD705s)對發炎相關基因mRNA量之影響 56 四、 探討量子點(QD705s)對MCP-1和IFN-蛋白之影響 56 五、 探討MyD88及NF-κB對量子點(QD705s)所誘發MCP-1表現增加 之影響 57 六、 探討QD705-PEG經由TLR4,而QD705-COOH經由TLR4和其他 細胞內TLRs 58 七、 探討QD705-PEG和QD705-COOH作用於細胞的位置 59 八、 探討TRIF對量子點(QD705s)所誘發IFN-b表現增加之影響 59 柒、 討論 第一部分、探討量子點(QD705s)在小鼠肺組織中的生物相容度(biocompatibility)和分解情形(biodegradation) 61 第二部分、在巨噬細胞(RAW264.7)中探討量子點(QD705s)所造 成肺組織不良反應之生物機制(mechanism)為何 65 捌、 結論 第一部分、探討量子點(QD705s)在小鼠肺組織中的生物相容度(biocompatibility)和分解情形(biodegration) 70 第二部分、在巨噬細胞(RAW264.7)中探討量子點(QD705s)所造 成肺組織不良反應之生物機制(mechanism)為何 ㄧ、探討量子點(QD705s)否會經 MyD88-dependent TLRs pathway 去調控MCP-1表現增加 71 二、探討量子點(QD705s)否會經 TRIF-dependent TLRs pathway 去調控IFN-表現增加 72 玖、圖表 圖一、奈米粒子的大小與形狀 73 圖二、奈米粒子在溶液中大小分佈 74 圖三、暴露奈米粒子後,小鼠肺泡沖洗液中總蛋白濃度及 LDH活性 75 圖四、暴露奈米粒子後,小鼠肺泡沖洗液中總IgG含量 76 圖五、暴露量子點(QD705s)後的不同時間,量子點存在肺部的情形77 圖六、暴露量子點(QD705s)後的不同時間,量子點對肺組織型態的 影響 78 圖七、暴露TiO2和SiO2 17後天,TiO2和SiO2對肺組織型態的影響 79 圖八、暴露量子點(QD705s)後的不同時間,在肺組織觀察 matrix metallopeptidase 12 (MMP12)的表現 80 圖九、暴露量子點(QD705s)後的不同時間,在肺組織觀察 macrophage marker (F4/80)的表現 81 圖十、暴露量子點(QD705s) 後17天,觀察肺組織纖維化的情形 82 圖十一、暴露量子點(QD705s) 後90天,肝功能及腎功能的變化 83 圖十二、暴露量子點(QD705s)後的不同時間,觀察肺組織 Metallothionein (MT)的表現 84 圖十三、暴露量子點(QD705s)後的不同時間,量子點的主要成分 Cd和Te在肺組織的變化情形 85 圖十四、探討奈米粒子(SiO2和TiO2)對各種細胞的細胞毒性 86 圖十五、探討量子點(QD705s)對各種細胞的細胞毒性 87 圖十六、探討量子點(QD705s)對各種細胞長時間的細胞毒性 88 圖十七、在小鼠巨噬細胞(RAW264.7 cells)中,探討處理不同時間 和劑量的量子點(QD705s)對與氧化壓力(ROS)之影響 89 圖十八、在小鼠巨噬細胞(RAW264.7 cells)中,探討處理不同時間 和劑量的量子點(QD705s)對與發炎相關基因mRNA量之影響90 圖十九、在小鼠巨噬細胞(RAW264.7 cells)中,探討Polymyxin B對 量子點(QD705s)促進MCP-1和IFN-蛋白量之影響 91 圖二十、在小鼠巨噬細胞(RAW264.7 cells)中,探討MyD88對量子點 (QD705s)促進MCP-1 蛋白表現之影響 92 圖二十一、在小鼠巨噬細胞(RAW264.7 cells)中,探討量子點(QD705s) 能否經由MyD88活化NF-kB和AP-1 93 圖二十二、在小鼠巨噬細胞(RAW264.7 cells)中,探討量子點(QD705s) 能否經由NF-B促進MCP-1 蛋白表現 94 圖二十三、在小鼠巨噬細胞(RAW264.7 cells)中,探討量子點(QD705s) 能否經由TLR4促進MCP-1 蛋白表現 95 圖二十四、在小鼠巨噬細胞(RAW264.7 cells)中,探討量子點(QD705s) 能否經由細胞內的TLRs促進MCP-1 蛋白表現 96 圖二十五、探討量子點(QD705s)進入小鼠巨噬細胞(RAW264.7 cells)的 情形 97 圖二十六、探討QD705-COOH是否會進入Lysosome 98 圖二十七、探討量子點(QD705s)是否需進入小鼠巨噬細胞 (RAW264.7 cells)才能促進MCP-1 蛋白表現 99 圖二十八、在小鼠巨噬細胞(RAW264.7 cells)中,探討TRIF對量子點 (QD705s)促進IFN-蛋白表現之影響100 圖二十九、在小鼠巨噬細胞(RAW264.7 cells)中,探討量子點(QD705s) 能否經由 TLR4促進IFN-b蛋白表現 101 圖三十、探討量子點(QD705s)是否需進入小鼠巨噬細胞(RAW264.7 cells)才能促進IFN-b蛋白表現 102 表ㄧ、動物實驗中奈米粒子的物化性質 103 表二、細胞實驗中量子點(QD705s)的物化性質 104 表三、小鼠暴露奈米粒子後的體重變化 105 表四、暴露奈米粒子後,肺泡沖洗液中細胞的分佈 106 表五、暴露高劑量量子點(QD705s) 後17天,肺功能的變化 107 表六、暴露低劑量量子點(QD705s) 後17天,肺功能的變化 108 表七、暴露高劑量量子點(QD705s) 後90天,肺功能的變化 109 表八、暴露量子點(QD705s) 後2、17和90天,肺組織的基因表現變化 110 表九、暴露奈米粒子(TiO2和SiO2)後17天,肺組織的基因表現變化 111 表十、在小鼠巨噬細胞(RAW264.7 cells)中,探討處理24小時的量子點 (QD705s)對與發炎相關基因mRNA量之影響 112 表十一、在小鼠巨噬細胞(RAW264.7 cells)中,探討處理24小時的 量子點(QD705s)對與TLRs相關基因mRNA量之影響 113 拾、附表 附表一、QD705-PEG產品分析報告(Certificate of Analysis,COA)114 附表二、QD705-COOH產品分析報告(Certificate of Analysis,COA) 115 附表三、比較經氣管灌注暴露奈米粒子所誘發的發炎反應 116 拾壹、參考文獻 117 拾貳、論文抽印本 126

    Abdollahi-Roodsaz, S., F. A. van de Loo, et al. (2012). "Destructive role of myeloid differentiation factor 88 and protective role of TRIF in interleukin-17-dependent arthritis in mice." Arthritis Rheum 64(6): 1838-1847.
    Abuchowski, A., T. van Es, et al. (1977). "Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol." J Biol Chem 252(11): 3578-3581.
    Al-Ashkar, F., R. Mehra, et al. (2003). "Interpreting pulmonary function tests: recognize the pattern, and the diagnosis will follow." Cleve Clin J Med 70(10): 866, 868, 871-863, passim.
    An, H., H. Xu, et al. (2002). "Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways." Immunol Lett 81(3): 165-169.
    Ballou, B., L. A. Ernst, et al. (2007). "Sentinel lymph node imaging using quantum dots in mouse tumor models." Bioconjug Chem 18(2): 389-396.
    Ballou, B., B. C. Lagerholm, et al. (2004). "Noninvasive imaging of quantum dots in mice." Bioconjug Chem 15(1): 79-86.
    Baughman, R. P. (2007). "Pulmonary hypertension associated with sarcoidosis." Arthritis Res Ther 9 Suppl 2: S8.
    Beckett, W. S., D. F. Chalupa, et al. (2005). "Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study." Am J Respir Crit Care Med 171(10): 1129-1135.
    Bermudez, E., J. B. Mangum, et al. (2004). "Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles." Toxicol Sci 77(2): 347-357.
    Bertin, G. and D. Averbeck (2006). "Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review)." Biochimie 88(11): 1549-1559.
    Bingisser, R., R. Speich, et al. (2000). "Interleukin-10 secretion by alveolar macrophages and monocytes in sarcoidosis." Respiration 67(3): 280-286.
    Blasius, A. L. and B. Beutler (2010). "Intracellular toll-like receptors." Immunity 32(3): 305-315.
    Burton, Z. and B. Bhushan (2006). "Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces." Ultramicroscopy 106(8-9): 709-719.
    Carter, J. D., A. J. Ghio, et al. (1997). "Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent." Toxicol Appl Pharmacol 146(2): 180-188.
    Castillo, P. M., J. L. Herrera, et al. (2008). "Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands." Nanomedicine (Lond) 3(5): 627-635.
    Cedervall, T., I. Lynch, et al. (2007). "Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles." Proc Natl Acad Sci U S A 104(7): 2050-2055.
    Chen, E. S. and D. R. Moller (2007). "Expression profiling in granulomatous lung disease." Proc Am Thorac Soc 4(1): 101-107.
    Chen, H. W., S. F. Su, et al. (2006). "Titanium dioxide nanoparticles induce emphysema-like lung injury in mice." Faseb J 20(13): 2393-2395.
    Chensue, S. W., I. G. Otterness, et al. (1989). "Monokine production by hypersensitivity (Schistosoma mansoni egg) and foreign body (Sephadex bead)-type granuloma macrophages. Evidence for sequential production of IL-1 and tumor necrosis factor." J Immunol 142(4): 1281-1286.
    Chou, C. C., H. Y. Hsiao, et al. (2008). "Single-walled carbon nanotubes can induce pulmonary injury in mouse model." Nano Lett 8(2): 437-445.
    Churg, A., C. Xie, et al. (2005). "Air pollution particles activate NF-kappaB on contact with airway epithelial cell surfaces." Toxicol Appl Pharmacol 208(1): 37-45.
    Cook, D. N., D. S. Pisetsky, et al. (2004). "Toll-like receptors in the pathogenesis of human disease." Nat Immunol 5(10): 975-979.
    Cooperstock, M. S. (1974). "Inactivation of endotoxin by polymyxin B." Antimicrob Agents Chemother 6(4): 422-425.
    Cui, Y., H. Liu, et al. (2011). "Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles." J Biomed Mater Res A 96(1): 221-229.
    de Haar, C., I. Hassing, et al. (2005). "Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model." Toxicol Sci 87(2): 409-418.
    Deng, L., C. Wang, et al. (2000). "Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain." Cell 103(2): 351-361.
    Denis, M. (1994). "Interleukin-1 (IL-1) is an important cytokine in granulomatous alveolitis." Cell Immunol 157(1): 70-80.
    Dobrovolskaia, M. A., D. R. Germolec, et al. (2009). "Evaluation of nanoparticle immunotoxicity." Nat Nanotechnol 4(7): 411-414.
    Erdely, A., T. Hulderman, et al. (2009). "Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers." Nano Lett 9(1): 36-43.
    Ferrara, A. (2011). "Chronic obstructive pulmonary disease." Radiol Technol 82(3): 245-263.
    Fujimori, Y., M. Kataoka, et al. (2003). "The role of interleukin-8 in interstitial pneumonia." Respirology 8(1): 33-40.
    Gao, X., Y. Cui, et al. (2004). "In vivo cancer targeting and imaging with semiconductor quantum dots." Nat Biotechnol 22(8): 969-976.
    Gao, X. and S. R. Dave (2007). "immunoassay for cancer molecular imaging." Adv Exp Med Biol 620: 57-73.
    Gill, R., M. Zayats, et al. (2008). "Semiconductor quantum dots for bioanalysis." Angew Chem Int Ed Engl 47(40): 7602-7625.
    Girard, M., E. Israel-Assayag, et al. (2004). "Pathogenesis of hypersensitivity pneumonitis." Curr Opin Allergy Clin Immunol 4(2): 93-98.
    Gopee, N. V., D. W. Roberts, et al. (2007). "Migration of intradermally injected quantum dots to sentinel organs in mice." Toxicol Sci 98(1): 249-257.
    Grassian, V. H., T. O'Shaughnessy P, et al. (2007). "Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm." Environ Health Perspect 115(3): 397-402.
    Grunewald, J. and A. Eklund (2007). "Role of CD4+ T cells in sarcoidosis." Proc Am Thorac Soc 4(5): 461-464.
    Gudmundsson, G., A. Bosch, et al. (1998). "Interleukin-10 modulates the severity of hypersensitivity pneumonitis in mice." Am J Respir Cell Mol Biol 19(5): 812-818.
    Gudmundsson, G. and G. W. Hunninghake (1997). "Interferon-gamma is necessary for the expression of hypersensitivity pneumonitis." J Clin Invest 99(10): 2386-2390.
    Hanaki, K., A. Momo, et al. (2003). "Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker." Biochem Biophys Res Commun 302(3): 496-501.
    Hardman, R. (2006). "A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors." Environ Health Perspect 114(2): 165-172.
    Hasegawa, M., S. Sato, et al. (1999). "Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fibrosis." Clin Exp Immunol 117(1): 159-165.
    He, X., S. H. Young, et al. (2011). "Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kappaB signaling, and promoting fibroblast-to-myofibroblast transformation." Chem Res Toxicol 24(12): 2237-2248.
    Henderson, R. F. (2005). "Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material." Exp Toxicol Pathol 57 Suppl 1: 155-159.
    Henry, C. J., D. A. Ornelles, et al. (2008). "IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17." J Immunol 181(12): 8576-8584.
    Ho, C. C., H. Chang, et al. (2011). "Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung." Nanotoxicology.
    Horn, F., C. Henze, et al. (2000). "Interleukin-6 signal transduction and lymphocyte function." Immunobiology 202(2): 151-167.
    Hoshino, A., K. Hanaki, et al. (2004). "Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body." Biochem Biophys Res Commun 314(1): 46-53.
    Hoshino, K., T. Kaisho, et al. (2002). "Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation." Int Immunol 14(10): 1225-1231.
    Iida, K., J. Kadota, et al. (1997). "Analysis of T cell subsets and beta chemokines in patients with pulmonary sarcoidosis." Thorax 52(5): 431-437.
    Iwasaki, A. and R. Medzhitov (2004). "Toll-like receptor control of the adaptive immune responses." Nat Immunol 5(10): 987-995.
    Jaiswal, J. K., H. Mattoussi, et al. (2003). "Long-term multiple color imaging of live cells using quantum dot bioconjugates." Nat Biotechnol 21(1): 47-51.
    Jovin, T. M. (2003). "Quantum dots finally come of age." Nat Biotechnol 21(1): 32-33.
    Kagan, J. C., T. Su, et al. (2008). "TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta." Nat Immunol 9(4): 361-368.
    Kagan, V. E., H. Bayir, et al. (2005). "Nanomedicine and nanotoxicology: two sides of the same coin." Nanomedicine 1(4): 313-316.
    Kaikita, K., T. Hayasaki, et al. (2004). "Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction." Am J Pathol 165(2): 439-447.
    Kaneshima, H., S. Nagai, et al. (1993). "[Differential detection of IL-1 beta and TNF-alpha mRNA on lung macrophages from patients with pulmonary sarcoidosis]." Nihon Kyobu Shikkan Gakkai Zasshi 31(9): 1068-1074.
    Kaufmann, S. H. and C. H. Ladel (1994). "Role of T cell subsets in immunity against intracellular bacteria: experimental infections of knock-out mice with Listeria monocytogenes and Mycobacterium bovis BCG." Immunobiology 191(4-5): 509-519.
    Kawai, T. and S. Akira (2009). "The roles of TLRs, RLRs and NLRs in pathogen recognition." Int Immunol 21(4): 317-337.
    Kawamoto, T., M. Ii, et al. (2008). "TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain." Eur J Pharmacol 584(1): 40-48.
    Kennel, S. J., J. D. Woodward, et al. (2008). "The fate of MAb-targeted Cd(125m)Te/ZnS nanoparticles in vivo." Nucl Med Biol 35(4): 501-514.
    Klaassen, C. D. and J. Liu (1997). "Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity." Drug Metab Rev 29(1-2): 79-102.
    Kohler, N., C. Sun, et al. (2006). "Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery." Small 2(6): 785-792.
    Kunkel, S. L., S. W. Chensue, et al. (1989). "Cellular and molecular aspects of granulomatous inflammation." Am J Respir Cell Mol Biol 1(6): 439-447.
    Kuschner, W. G., A. D'Alessandro, et al. (1997). "Early pulmonary cytokine responses to zinc oxide fume inhalation." Environ Res 75(1): 7-11.
    Lam, C. W., J. T. James, et al. (2004). "Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation." Toxicol Sci 77(1): 126-134.
    Lamkanfi, M. and V. M. Dixit (2011). "Modulation of inflammasome pathways by bacterial and viral pathogens." J Immunol 187(2): 597-602.
    Lin, C. H., L. W. Chang, et al. (2009). "The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications." Nanotechnology 20(21): 215101.
    Lin, C. H., M. H. Yang, et al. (2010). "Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice." Nanotoxicology.
    Lin, C. H., M. H. Yang, et al. (2011). "Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice." Nanotoxicology 5(4): 650-663.
    Lin, P., J. W. Chen, et al. (2008). "Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice." Environ Sci Technol 42(16): 6264-6270.
    Lovric, J., H. S. Bazzi, et al. (2005). "Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots." J Mol Med 83(5): 377-385.
    Lucarelli, M., A. M. Gatti, et al. (2004). "Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles." Eur Cytokine Netw 15(4): 339-346.
    Lundqvist, M., J. Stigler, et al. (2008). "Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts." Proc Natl Acad Sci U S A 105(38): 14265-14270.
    Lupfer, C. R. and T. D. Kanneganti (2012). "The role of inflammasome modulation in virulence." Virulence 3(3): 262-270.
    Makela, S. M., M. Strengell, et al. (2009). "Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells." J Leukoc Biol 85(4): 664-672.
    Malandrino, G., M. Blandino, et al. (2005). "A novel diamine adduct of zinc bis(2-thenoyl-trifluoroacetonate) as a promising precursor for MOCVD of zinc oxide films." Inorg Chem 44(26): 9684-9689.
    Maslanik, T., K. Tannura, et al. (2012). "Commensal Bacteria and MAMPs Are Necessary for Stress-Induced Increases in IL-1beta and IL-18 but Not IL-6, IL-10 or MCP-1." PLoS One 7(12): e50636.
    Maynard, A. D. (2007). "Nanotechnology: the next big thing, or much ado about nothing?" Ann Occup Hyg 51(1): 1-12.
    Meldrum, D. R., X. Meng, et al. (1998). "Tissue-specific protein kinase C isoforms differentially mediate macrophage TNFalpha and IL-1beta production." Shock 9(4): 256-260.
    Michelsen, K. S., M. H. Wong, et al. (2004). "Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E." Proc Natl Acad Sci U S A 101(29): 10679-10684.
    Moller, D. R., J. D. Forman, et al. (1996). "Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis." J Immunol 156(12): 4952-4960.
    Monteiller, C., L. Tran, et al. (2007). "The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area." Occup Environ Med 64(9): 609-615.
    Mornex, J. F., C. Leroux, et al. (1994). "From granuloma to fibrosis in interstitial lung diseases: molecular and cellular interactions." Eur Respir J 7(4): 779-785.
    Mroz, R. M., M. Korniluk, et al. (2008). "Increased levels of interleukin-12 and interleukin-18 in bronchoalveolar lavage fluid of patients with pulmonary sarcoidosis." J Physiol Pharmacol 59 Suppl 6: 507-513.
    Muller-Quernheim, J. (1998). "Sarcoidosis: immunopathogenetic concepts and their clinical application." Eur Respir J 12(3): 716-738.
    Muller-Quernheim, J., S. Pfeifer, et al. (1992). "Lung-restricted activation of the alveolar macrophage/monocyte system in pulmonary sarcoidosis." Am Rev Respir Dis 145(1): 187-192.
    Muller, J., F. Huaux, et al. (2005). "Respiratory toxicity of multi-wall carbon nanotubes." Toxicol Appl Pharmacol 207(3): 221-231.
    Murray, A. R., E. Kisin, et al. (2009). "Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes." Toxicology 257(3): 161-171.
    Nathan, N. and Y. Denizot (1998). "Anti-inflammatory cytokines (IL-4, IL-10, IL-13) in plasma during mesenteric infarction." Mediators Inflamm 7(2): 119.
    Ndengele, M. M., C. Muscoli, et al. (2005). "Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages." Shock 23(2): 186-193.
    Nemmar, A., P. H. Hoet, et al. (2002). "Passage of inhaled particles into the blood circulation in humans." Circulation 105(4): 411-414.
    Nenan, S., E. Boichot, et al. (2005). "Macrophage elastase (MMP-12): a pro-inflammatory mediator?" Mem Inst Oswaldo Cruz 100 Suppl 1: 167-172.
    Nichkova, M., D. Dosev, et al. (2007). "Quantum Dots as Reporters in Multiplexed Immunoassays for Biomarkers of Exposure to Agrochemicals." Anal Lett 40(7): 1423-1433.
    Ohtoshi, T., H. Takizawa, et al. (1998). "Diesel exhaust particles stimulate human airway epithelial cells to produce cytokines relevant to airway inflammation in vitro." J Allergy Clin Immunol 101(6 Pt 1): 778-785.
    Okuma, T., Y. Terasaki, et al. (2006). "MCP-1/CCR2 signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxide production." Int J Exp Pathol 87(6): 475-483.
    Owens, D. E., 3rd and N. A. Peppas (2006). "Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles." Int J Pharm 307(1): 93-102.
    Oyabu, T., A. Ogami, et al. (2007). "Biopersistence of inhaled nickel oxide nanoparticles in rat lung." Inhal Toxicol 19 Suppl 1: 55-58.
    Pahl, H. L. (1999). "Activators and target genes of Rel/NF-kappaB transcription factors." Oncogene 18(49): 6853-6866.
    Pan, Y. L., J. Y. Cai, et al. (2006). "Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis." Acta Biochim Biophys Sin (Shanghai) 38(9): 646-652.
    Park, E. J., J. Yoon, et al. (2009). "Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation." Toxicology 260(1-3): 37-46.
    Patel, J. K., R. L. Clifford, et al. (2012). "Ciclesonide inhibits TNFalpha- and IL-1beta-induced monocyte chemotactic protein-1 (MCP-1/CCL2) secretion from human airway smooth muscle cells." Am J Physiol Lung Cell Mol Physiol 302(8): L785-792.
    Pechkovsky, D. V., T. Goldmann, et al. (2006). "Interleukin-18 expression by alveolar epithelial cells type II in tuberculosis and sarcoidosis." FEMS Immunol Med Microbiol 46(1): 30-38.
    Pejnovic, N., O. Tomic, et al. (1994). "[IL-1, TNF and IL-6 production by alveolar mononuclear cells in patients with sarcoidosis]." Srp Arh Celok Lek 122 Suppl 1: 96-97.
    Premkumar, V., M. Dey, et al. (2010). "MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages." BMC Chem Biol 10: 3.
    Pueringer, R. J., D. A. Schwartz, et al. (1993). "The relationship between alveolar macrophage TNF, IL-1, and PGE2 release, alveolitis, and disease severity in sarcoidosis." Chest 103(3): 832-838.
    Qi, L. and X. Gao (2008). "Emerging application of quantum dots for drug delivery and therapy." Expert Opin Drug Deliv 5(3): 263-267.
    Reichenberger, F., J. Schauer, et al. (2001). "Different expression of endothelin in the bronchoalveolar lavage in patients with pulmonary diseases." Lung 179(3): 163-174.
    Resch-Genger, U., M. Grabolle, et al. (2008). "Quantum dots versus organic dyes as fluorescent labels." Nat Methods 5(9): 763-775.
    Roberts, M. J., M. D. Bentley, et al. (2002). "Chemistry for peptide and protein PEGylation." Adv Drug Deliv Rev 54(4): 459-476.
    Romoser, A. A., P. L. Chen, et al. (2011). "Quantum dots trigger immunomodulation of the NFkappaB pathway in human skin cells." Mol Immunol 48(12-13): 1349-1359.
    Rutz, M., J. Metzger, et al. (2004). "Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner." Eur J Immunol 34(9): 2541-2550.
    Ryman-Rasmussen, J. P., J. E. Riviere, et al. (2006). "Penetration of intact skin by quantum dots with diverse physicochemical properties." Toxicol Sci 91(1): 159-165.
    Ryman-Rasmussen, J. P., J. E. Riviere, et al. (2007). "Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes." J Invest Dermatol 127(1): 143-153.
    Ryter, S. W. and A. M. Choi (2005). "Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models." Antioxid Redox Signal 7(1-2): 80-91.
    Samet, J. M., L. M. Graves, et al. (1998). "Activation of MAPKs in human bronchial epithelial cells exposed to metals." Am J Physiol 275(3 Pt 1): L551-558.
    Sayes, C. M., A. A. Marchione, et al. (2007). "Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles." Nano Lett 7(8): 2399-2406.
    Schipper, M. L., Z. Cheng, et al. (2007). "microPET-based biodistribution of quantum dots in living mice." J Nucl Med 48(9): 1511-1518.
    Schuyler, M., K. Gott, et al. (2000). "Mediators of hypersensitivity pneumonitis." J Lab Clin Med 136(1): 29-38.
    Seaton, A. and K. Donaldson (2005). "Nanoscience, nanotoxicology, and the need to think small." Lancet 365(9463): 923-924.
    Shigehara, K., N. Shijubo, et al. (2000). "Increased levels of interleukin-18 in patients with pulmonary sarcoidosis." Am J Respir Crit Care Med 162(5): 1979-1982.
    Shimada, A., N. Kawamura, et al. (2006). "Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse." Toxicol Pathol 34(7): 949-957.
    Shiohara, A., A. Hoshino, et al. (2004). "On the cyto-toxicity caused by quantum dots." Microbiol Immunol 48(9): 669-675.
    Shvedova, A. A., E. R. Kisin, et al. (2005). "Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice." Am J Physiol Lung Cell Mol Physiol 289(5): L698-708.
    Steffen, M., J. Petersen, et al. (1993). "Increased secretion of tumor necrosis factor-alpha, interleukin-1-beta, and interleukin-6 by alveolar macrophages from patients with sarcoidosis." J Allergy Clin Immunol 91(4): 939-949.
    Sugiyama, Y. and K. Oshikawa (2002). "[Mechanism of sarcoid granuloma formation--participation of cytokines and chemokines]." Nippon Rinsho 60(9): 1728-1733.
    Takeda, K. and S. Akira (2001). "Regulation of innate immune responses by Toll-like receptors." Jpn J Infect Dis 54(6): 209-219.
    Takeda, K. and S. Akira (2004). "TLR signaling pathways." Semin Immunol 16(1): 3-9.
    Tang, M., T. Xing, et al. (2008). "Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons." Environ Health Perspect 116(7): 915-922.
    Tetley, T. D. (2007). "Health effects of nanomaterials." Biochem Soc Trans 35(Pt 3): 527-531.
    Theiss, A. L., C. R. Fuller, et al. (2005). "Growth hormone reduces the severity of fibrosis associated with chronic intestinal inflammation." Gastroenterology 129(1): 204-219.
    Tsai, C. Y., S. L. Lu, et al. (2012). "Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages." J Immunol 188(1): 68-76.
    Tsay, J. M. and X. Michalet (2005). "New light on quantum dot cytotoxicity." Chem Biol 12(11): 1159-1161.
    Umemura, T. (2000). "Experimental reproduction of itai-itai disease, a chronic cadmium poisoning of humans, in rats and monkeys." Jpn J Vet Res 48(1): 15-28.
    Veronese, F. M. and G. Pasut (2005). "PEGylation, successful approach to drug delivery." Drug Discov Today 10(21): 1451-1458.
    Vinceti, M., E. T. Wei, et al. (2001). "Adverse health effects of selenium in humans." Rev Environ Health 16(4): 233-251.
    Voura, E. B., J. K. Jaiswal, et al. (2004). "Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy." Nat Med 10(9): 993-998.
    Wahlstrom, J., M. Berlin, et al. (1999). "Phenotypic analysis of lymphocytes and monocytes/macrophages in peripheral blood and bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis." Thorax 54(4): 339-346.
    Wang, C., L. Deng, et al. (2001). "TAK1 is a ubiquitin-dependent kinase of MKK and IKK." Nature 412(6844): 346-351.
    Warheit, D. B., B. R. Laurence, et al. (2004). "Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats." Toxicol Sci 77(1): 117-125.
    Wesselkamper, S. C., L. C. Chen, et al. (2001). "Development of pulmonary tolerance in mice exposed to zinc oxide fumes." Toxicol Sci 60(1): 144-151.
    Willard, D. M. and A. Van Orden (2003). "Quantum dots: Resonant energy-transfer sensor." Nat Mater 2(9): 575-576.
    Woodle, M. C. (1998). "Controlling liposome blood clearance by surface-grafted polymers." Adv Drug Deliv Rev 32(1-2): 139-152.
    Wu, X., H. Liu, et al. (2003). "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots." Nat Biotechnol 21(1): 41-46.
    Xiao, Y., S. P. Forry, et al. (2010). "Dynamics and mechanisms of quantum dot nanoparticle cellular uptake." J Nanobiotechnology 8: 13.
    Xu, H., J. Yan, et al. (2012). "A Critical Role for the TLR4/TRIF Pathway in Allogeneic Hematopoietic Cell Rejection by Innate Immune Cells." Cell Transplant.
    Xu, Y., M. Rojkind, et al. (1996). "Regulation of monocyte chemoattractant protein 1 by cytokines and oxygen free radicals in rat hepatic fat-storing cells." Gastroenterology 110(6): 1870-1877.
    Yamamoto, M. and S. Akira (2004). "[TIR domain--containing adaptors regulate TLR-mediated signaling pathways]." Nihon Rinsho 62(12): 2197-2203.
    Yang, R. S., L. W. Chang, et al. (2007). "Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment." Environ Health Perspect 115(9): 1339-1343.
    Yazdi, A. S., G. Guarda, et al. (2010). "Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta." Proc Natl Acad Sci U S A 107(45): 19449-19454.
    Zhang, L. W. and N. A. Monteiro-Riviere (2009). "Mechanisms of quantum dot nanoparticle cellular uptake." Toxicol Sci 110(1): 138-155.
    Zhang, L. W., W. W. Yu, et al. (2008). "Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes." Toxicol Appl Pharmacol 228(2): 200-211.
    Zhang, T., J. L. Stilwell, et al. (2006). "Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements." Nano Lett 6(4): 800-808.
    Zhang, Y., W. Chen, et al. (2007). "In vitro and in vivo toxicity of CdTe nanoparticles." J Nanosci Nanotechnol 7(2): 497-503.
    Zhu, M. T., W. Y. Feng, et al. (2008). "Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats." Toxicology 247(2-3): 102-111.
    Zhu, Q., K. F. Karlsson, et al. (2007). "Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots." Nano Lett 7(8): 2227-2233.
    Ziegenhagen, M. W. and J. Muller-Quernheim (2003). "The cytokine network in sarcoidosis and its clinical relevance." J Intern Med 253(1): 18-30.
    Zissel, G., J. Homolka, et al. (1996). "Anti-inflammatory cytokine release by alveolar macrophages in pulmonary sarcoidosis." Am J Respir Crit Care Med 154(3 Pt 1): 713-719.
    Zughaier, S. M., S. M. Zimmer, et al. (2005). "Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins." Infect Immun 73(5): 2940-2950.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE