簡易檢索 / 詳目顯示

研究生: 林冠翰
Lin, Kuan-Han
論文名稱: 雙相熱虹吸管環路在太陽能熱水器應用於 不同環境溫度下的效率分析
The analysis of two-phase thermosyphon closed loop of the solar thermal storage system at different ambient temperature
指導教授: 林唯耕
Lin, Wei-Keng
口試委員: 蔡尤溪
Chuah, Yew-Khoy
林鴻文
Lin, Hung-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 57
中文關鍵詞: 雙相封閉式熱虹吸環路太陽能熱水器
外文關鍵詞: Two-phase closed loop thermosyphon, Solar thermal collectors
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氣候異常,能源浩劫,綠色能源蓬勃發展,因此太陽能熱水器佔有舉足輕重的地位。但太陽能熱水器採取直接加熱水的方式,卻有一些技術上問題,如:腐蝕、冷凍、結垢、高熱損失等等。因此目前太陽能熱水器逐漸朝向非直接熱交換式。由於雙相熱虹吸管屬於高效率熱傳工具,因此本論文中探討雙相熱紅吸管的應用。
    雙相封閉式熱虹吸環路(TPCLT)是一個高效率的雙相移熱工具,其系統包含蒸發部、冷凝部、蒸氣頭、蒸氣線、液體頭以及液體線,移熱的方式主要是利用工作液體的相變化將熱能由蒸發部移至冷凝部,此裝置為自然且單向循環並不需要而外的動力裝置,並具有將熱量長距離傳輸的能力,所以十分有利於應用在太陽能熱水與建築物一體化。
    本篇論文主要是研究TPCLT環路系統在太陽能熱水器的應用,實驗中直接把環路放置在太陽底下,依照環路設定不同填充量測試。大型TPCLT環路實驗結果顯示此系統填充量為50%時,使用5mm薄鋁板,轉換效率為65%,水槽溫度達到42度。
    關鍵字:雙相封閉式熱虹吸環路、太陽能熱水器


    A two-phase closed loop thermosyphon (TPCLT) is a high-efficiency two-phase heat transfer device, which is composed of evaporator, condenser, vapor head, vapor line, liquid head and liquid line. The basic concept is the phase change of a working fluid is used to transport heat from evaporator to condenser through natural circulation without any external driving forces. The device is capable to transport heat for a long distance, so it is proper to apply on the building integrated solar thermal systems.
    This study presents the possibility of the TPCLT apply on the solar thermal storage system. This experiment put TPCLT under sunshine with different filling ratio. The efficiency is 65% in filling ratio 50% with painting 3mm thin alumi plate. .
    Keywords : Two-phase closed loop thermosyphon、Solar thermal collectors

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號表 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 文獻回顧 4 1.3.1 傳統熱管(Heat Pipe) 4 1.3.2 迴路式熱管(LHP) 6 1.3.3 雙相封閉熱虹吸式環路(TPCLT) 8 第二章 TPCLT理論分析 13 2.1 TPCLT工作原理 13 2.2 TPCLT之熱傳限制 14 2.2.1 乾化界限(Dryout Limit) 14 2.2.2 音速界限(Sonic Limit) 14 2.2.3 沸騰界限(Boiling Limit) 15 2.2.4 黏滯界限(Viscous Limit) 15 2.2.5 非凝結氣體(Non-Condensable Gas , NCG)的影響 15 2.3 TPCLT理論基礎分析 15 第三章 TPCLT環路元件 18 3.1 工作流體的選擇 18 3.2 蒸發部之選用 19 3.3 冷凝部之設計 20 3.4 循環管路之設計 21 第四章 實驗設備與方法 27 4.1 實驗前準備工作 4.1.1 真空系統 (Vacuum system) 27 4.1.2 填充工作流體 27 4.2 TPCLT環路測試設備 28 4.2.1 TPCLT環路 28 4.3 TPCLT環路性能測試 30 4.3.1 測試平台建立 30 4.3.2 性能測試步驟 31 第五章 實驗結果與討論 37 5.1 TPCLT環路在太陽輻射熱成功啟動 38 5.2 TPCLT環路不同填充量測試 39 5.2.1 不同填充量之加熱之情形 40 5.2.2 不同填充量之加熱之討論 42 5.3 TPCLT環路環路在填充量50%不同厚度鋁板及塗層測量 42 5.3.1 不同厚度鋁板及塗層影響 43 5.3.2 不同厚度鋁板及塗層影響討論 47 5.4 TPCLT環路夜間溫度狀態 47 5.4.1 TPCLT環路夜間溫度狀態討論 47 5.5 TPCLT環路加熱功率與效率比較 48 5.5.1 TPCLT環路加熱功率與效率討論 48 5.6 TPCLT環路與SJ環路效能比較 49 5.6.1 TPCLT環路與SJ環路效能比較 49 第六章 結論 53 參考文獻 55

    [1] 工研院能資所,太陽能熱水系統專業技術人員講習,民國90年。
    [2] 經濟部能源局,再生能源熱利用獎勵補助辦法,太陽能熱水器補助辦法。
    [3] John Archibald, “BUILDING INTEGRATED SOLAR THERMAL ROOFING SYSTEMS, HISTORY, CURRENT STATUS, AND FUTURE PROMISE”, American Solar Roofing Company, 8703 Chippendale Court, Annandale, Va. 22003
    , “Building integrated Solar Thermal Systems in an Urban Scale”, AIT Austrian Institute of Technology Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H.
    [4] Helena Gajbert , “Solar thermal energy systems for building integration”, Division of Energy and Building Design Department of Architecture and Built Environment Lund University, Faculty of Engineering LTH, 2008, Report EBD-T--08/10
    [5] F.J. Stenger, NASA TM X-1310, 1966
    [6] Gaugler, R. S., US Patent Application. Dec. 12, 1942. Published US Patent NO.2350348,June 1944.
    [7] Cotter, T. P., “Theoretical of Heat Pipes”, Los Alamos Science Lab. Roport NO. LA-3246-MS, 1965.
    [8] Levy, E. K., “Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressure”, J. Engineering for Industry, Vol. 90, pp.547-552. 1968.
    [9] Tien, C. L. and Sun, K. H.,”Minimun Meniscus Radius of Heat Pipes with a Wicking Material ”, Int. J. Heat Mass Transfer 14, pp.1853-1855, 1970.
    [10] Busse, C. A., “Pressure Drop in the Vapor Phase of Long Heat Pipe”, Proceedings of International Thermionic Conversion Specialist Conference, IEEE, New York. 1973.
    [11] Asselman, G. A. and Green, D. B., “Heat Pipes”, Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
    [12] Yoshida, K., “Flat Plate Heat Pipe for Commercial Uses”, Proc. 5 Int. Heat Pipe Conf., Tsukuba, Japan, 1984.
    [13] Xie, H., Mostafa, A., Wendy, L., and Kevin, H., “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-Notebooks”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 19, No. 1, pp. 54-65. March 1996.
    [14] Mochizuki, M., “Hinged Heat Pipes for Cooling Notebook PCs”, IEEE, pp. 64-72, 1997.
    [15] Maidanik, Y. F., “Design and Investigation of Methods of Regulation of Loop Heat Pipes for Terrestrial and Space Applications”, Institute of Thermophysics, Ural Division of the Russian Academy of Sciences, SAE Technical Paper 941407, 1994.
    [16] Nikitkin, N. N., Bienert, W. B., and Goncharov, K. A., “Non Condensable Gases and Loop Heat Pipe Operation”, Dynatherm Corp and TAIS Ltd, SAE Technical Paper No. 981584, 1998.
    [17] Maidanik, Y. F. and Pastukhov, V. G., “Loop Pipe-Recent Developments, Test Results and Applications”, Institute of Thermophysics, Ural Division of Russian Academy of Sciences, SAE Technical Paper 1999-01-2530, 1999.
    [18] Muraoka, I., Ramos, F. M., and Vlassov , V. V., “Analysis of the Operational Characteristics and Limits of Loop Heat Pipes with Porous Element in the Condenser”, International Journal of Heat and Transfer, Vol. 44, pp. 2287-2297, 2001.
    [19] 張文華,”迴路式熱管參數影響之研究”,國立台灣大學機械工程學系研究所碩士論文,2003年6月。
    [20] Abreu SL, Colle S. An experimental study of two-phase closed thermosy-phons for compact solar domestic hot-water systems. Sol Energy2004;76:141–5.
    [21] Nada SA, El-Ghetany HH, Hussein HMS. Performance of a two-phase closed thermosyphon solar collector with a shell and tube heat exchanger. Appl Thermal Eng 2004;24:1959–68.
    [22] Hussein HMS, El-Ghetany HH, Nada SA. Performance of wickless heat pipe flat plate solar collecto rshaving different pipes crosssections geometries and filling ratios. Energy Convers Manag2006;47:1539–49.
    [23] Chow TT, Dong Z, Chan LS, Fong KF, Bai Y. Performance evaluation of evacuated tube solar domestic hot water systems in Hong Kong. Energy Build2011;43:3467–74.
    [24] Samanci A, Berber A. Experimental investigation of single-phase and two phase closed thermosyphon solar water heater systems. Sci Res Essays2011;6(4):688–93.
    [25] Xiao L, Wu SY, Zhang QL, Li YR. Theoretical investigation on thermal performance of heatpipe flat plate solar collector with cross flow heat exchanger. Heat Mass Transf 2012;48:1167–76.
    [26] Zhang L, Wang W, Yu Z, Fan L, Hua Y, Ni Y, Fan J, Cen K. An experimental Investigation of a natural circulation heat pipe system applied to a parabolic trough solar collector steam generation system. Sol Energy2012:86911–9.
    [27] WeiL, Yuan D, Tang D, Wua B. Astudyona flat-plate type of solar heatcollector with an integrated heat pipe. Sol Energy2013;97:19–25.
    [28] Chougule SS, Sahu SK, Pise AT. Performance enhancement of two phase thermosyphon flat-plate solar collectors by using surfactant and nanofluid. Front Heat Pipes2013;4:013002.
    [29] Chougule SS, Sahu SK, Pise AT. Thermal performance of two phase thermo-syphon flat-plate solar collectors using nanofluid. J Sol Energy Eng2014;136

    QR CODE