簡易檢索 / 詳目顯示

研究生: 楊喻翔
Yang, Yu-Hsiang
論文名稱: 高功率發光二極體老化試驗之加速因子分析
Acceleration Factor Analysis of Aging Test for High Power Light Emitting Diodes
指導教授: 江國寧
Chiang, Kuo-Ning
口試委員: 江國寧
李昌駿
劉德騏
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 發光二極體IES LM-80-08IES TM-21-11加速老化試驗加速因子
外文關鍵詞: Light emitting diode (LED), IES LM-80-08, IES TM-21-11, Accelerated aging test, Acceleration factor (AF)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球緩化的影響,發光二極體因其具有低汙染、低耗能與壽命長等特性,因此變得越來越普及。而目前發光二極體產業中,最普遍被使用的規範為IES LM-80-08,然其測試時間過於冗長,會延長產品的上市時程,造成發光二極體產業的研發障礙。
    許多種應力形式可能影響發光二極體的光衰,例如溫度應力、電流應力與光應力。在本研究中,將提出在不同高溫應力但無輸入電流的情況,進行高功率發光二極體的加速老化試驗,並採用相同型號之一瓦氮化鎵發光二極體作為測試樣本。樣本包含白光發光二極體、藍光發光二極體與已去除透鏡之藍光發光二極體。其中白光發光二極體與藍光發光二極體之差別在於白光發光二極體有螢光粉,藍光發光二極體則無。隨著加速老化試驗進行記錄其光衰,再根據樣本之差異性,可分離出各光衰機制。
    在深入了解樣本結構後,開始進行加速老化試驗,研究旨在(一)預估光衰模型,提供準確的壽命預估,(二)找出溫度應力在光衰老化試驗中的加速因子,(三)提出可用的方法以縮短目前至少必須進行6,000小時的IES LM-80-08與TM-21-11可靠度測試規範。由加速老化試驗結果發現,足夠高的溫度應力可以有效縮短發光二極體晶片的不穩定期。另外由本研究溫度應力加速因子所推算的預估壽命,和IES LM-80-08 與TM-21-11推算得到的預估壽命範圍皆相符。因此建議,現行發光二極體測試規範的溫度應力可以設定更為嚴苛,達到減少測試的時間,縮短產品上市時程,促進目前發光二極體產業的發展。


    Due to the effect of global warming, light emitting diodes (LEDs) have become more and more popular in recent years with its advantages like low pollution, low power consumption, long operation lifetime and so on. However, the reliability test standard, IES LM-80-08, which is utilized mostly by LED industry costs too much time and prolonged the time-to-market. This situation can be regarded as an obstacle to the LED Research and development.
    There are several types of stress may affect the LED degradation such as temperature stress, current stress, and optical stress. In this study, an accelerated aging test on high power LEDs at different high temperature stress without input current is proposed. A Gallium Nitride (GaN) based 1-W LEDs from the same series are chosen as test samples. The samples consist of white LEDs, blue LEDs and decapsulated blue LEDs. The difference between white LEDs, and blue LEDs is that white LEDs have phosphor but blue LEDs do not. The degradation of light output was detected during aging. According to the difference of samples, each degradation mechanisms can be separated.
    The accelerated aging test started from an in-depth knowledge of the device structure, and aimed at (i) extrapolating the degradation model that can provide an accurate lifetime estimation, (ii) investigating acceleration factors (AF) of temperature stress in the aging test for degradation, (iii) proposing an available method to shorten the reliability test standards, IES LM-80-08 and TM-21-11, which cost 6,000 hours at least. The results of accelerated aging test show that a high enough temperature stress can effectively shorten the unstable period of LED chip. And the estimated lifetimes calculated from the AF of temperature stress in this study conform the span of lifetimes calculated from the IES LM-80-08 and TM-21-11. Therefore, it is recommended that the temperature stress of existing LED test standard can be set harsher. It would reduce testing time and shorten time-to-market and promote the current light-emitting diode industry.

    誌謝 I 摘要 II ABSTRACT IV 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 2 1.3 文獻回顧 5 1.4 研究目標 11 第二章 基礎理論 14 2.1 發光二極體發光原理 14 2.2 二極體電壓電流與溫度關係特性 25 2.3 光學特性基礎理論 28 2.3.1 光通量 28 2.3.2 色溫 29 2.3.3 演色性 31 2.4 熱傳遞分析 31 2.4.1 熱傳遞行為 32 2.4.2 發光二極體封裝結構之熱傳遞分析 34 2.5 有限單元法理論 36 2.5.1 穩態熱傳導有限單元法理論 37 2.6 加速老化試驗 40 2.6.1 阿瑞尼士模型 41 2.6.2 艾林模型 42 2.7 統計方法 43 2.7.1 韋伯分布 43 第三章 高功率發光二極體封裝結構之光學與熱分析 45 3.1 高功率發光二極體之封裝結構分析 46 3.2 高功率發光二極體光電轉換效率量測試驗 47 3.3 高功率發光二極體之有限單元熱分析 49 3.3.1 高功率發光二極體之有限單元熱分析模型 49 3.3.2 熱分析模擬結果 54 3.4 發光二極體晶片接面溫度量測試驗 57 3.4.1 順向偏壓法量測過程 57 3.4.2 發光二極體接面溫度量測結果 61 3.4.3 熱分析模擬結果與實驗之驗證 64 第四章 高功率發光二極體加速老化因子分析 66 4.1 發光二極體之流明維持率量測規範 67 4.2 初步加速老化試驗 69 4.2.1 初步加速老化試驗設計 69 4.2.2 初步實驗結果與討論 72 4.3 溫度應力加速老化試驗設計 73 4.4 溫度應力加速老化試驗結果與討論 74 4.4.1 高功率發光二極體加速老化試驗破壞檢測 74 4.4.2 高功率發光二極體受加速老化試驗之光衰情形 77 4.4.3 加速老化試驗之壽命預估與壽命模型 81 4.4.4 對比IES LM-80-08與TM-21-11之壽命預估 87 4.4.5 高功率發光二極體光衰壽命預估 91 第五章 結論與未來展望 94 參考文獻 98

    [1] E. M. S. Jr, F. L. M. Antunes and A. J. Perin, “Junction Temperature Estimation for High Power Light-Emitting Diodes,” International Symposium on Industrial Electronics, Vigo, Spain, June 4-7, 2007.
    [2] M. Sizong, L. Junhui, D. Ji-an and D. Guiling, “Bump Thermal Management Analysis of LED with Flipchip Package,” International Conference on Electronic Packaging Technology, Shanghai, China, August 26-29, 2006.
    [3] IES(Illuminating Engineering Society) LM-79-08, “Approved Method: Electrical and Photometric Measurements of Solid-State Lighting Products,” 2008
    [4] IES(Illuminating Engineering Society) LM-80-08, “Approved Method: Measuring Lumen Maintenance of LED Light Sources,” 2008
    [5] IES(Illuminating Engineering Society) TM-21-11, “Projecting Long Term Lumen Maintenance of LED Light Sources,” 2011
    [6] C. Bohler, “LEDs for illumination: past, present and future,” International Semiconductor Device Symposium Research, Washington, USA, December 10-12, 2003.
    [7] E. F. Schubert, Light-Emitting Diode, Cambridge University Press, New York, 2003.
    [8] S. Buso, G. Spiazzi, M. Meneghini and G. Meneghesso, “Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias,” IEEE Transactions on Device and Material Reliability, Vol. 8, No. 2, pp. 312-322, June, 2008.
    [9] H. J. Round, “A Note on Carborundum,” Electrical world, Vol. 49, No. 6, pp. 309, February, 1907.
    [10] N. Holonyak, “John Bardeen and the Point-Contact Transistor,” Physics Today, Vol. 45, No. 4, pp.36-43, April, 1992.
    [11] S. Nakamura, T. Mukai and M. Senoh, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes,” Japanese Journal of ApplyPhysics, Vol. 30, No. 12A, pp. 1998-2001, December, 1991.
    [12] S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Japanese Journal of Apply Physics, Vol. 31, No.10B, pp. 1457-1459, October, 1992.
    [13] S. Nakamura, M. Senoh and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Japanese Journal of Apply Physics, Vol. 32, No. 1A/B, pp.8-11, January, 1993.
    [14] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structure,” Japanese Journal of Apply Physics, Vol. 34, No. 7A, pp.797-799, July 1995.
    [15] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based Light Emitters and Lasers, Springer, Berlin, 1997.
    [16] R. Mueller-Mach, G. O. Mueller, M. R. Krames and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 2, pp. 339-345, March-April, 2002.
    [17] M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso and E. Zanoni, “High Temperature Electro-Optical Degradation of InGaN/GaN HBLEDs,” Microelectronics Reliability, Vol. 47, No. 9-11, pp. 1625-1629, September-November, 2007.
    [18] L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso and E. Zanoni, “Accelerated Life Test of High Brightness Light Emitting Diodes” IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 2, pp. 304-311, June, 2008.
    [19] C. C. Tsai, J. Wang, Y. C. Hsu, Y.J. Lin, M. H. Chen, C. W. Lee, S. B. Huang, H. L. Hu and W. H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 3, pp. 367-371, September, 2009.
    [20] B. Fan, H. Wu, Y. Zhao, Y. Xian and G. Wang, “Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes,” IEEE Photonics Technology Letters, Vol. 19, No. 15, pp. 1121-1123, August, 2007.
    [21] Y. C. Hsu, Y. K. Lin, M. H. Chen, C. C. Tsai, J. H. Kuang and S. B. Huang, H. L. Hu, Y. I. Su and W. H. Cheng, “Failure Mechanisms Associated With Lens Shape of High-Power LED Modules in Aging Test,” IEEE Lasers and Electro-Optics Society, Lake Buena Vista, FL, USA, October 21-25, 2007.
    [22] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso and E. Zanoni, “A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs,” IEEE Transactions on Electron Devices, Vol. 57, No. 1, pp. 108-118, January, 2010.
    [23] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu and L. Deng, “Solid-state lighting: failure analysis of white LEDs,” Journal of Crystal Growth, Vol. 268, No. 3-4, pp. 449-456, August, 2004.
    [24] J. C. Lin and K. N. Chiang, “Thermal/Mechanical Analysis of Novel C-TSOP Using Nonlinear FEM Method,” Journal of the Chinese Institute of Engineers, Vol. 24, No. 4, pp.453-462, 2001.
    [25] K. M. Chen, K. H. Houng and K. N. Chiang, “Thermal resistance analysis and validation of flip chip PBGA packages,” Microelectronics Reliability, Vol.46, No. 2-4, pp. 440-448, February-April, 2006.
    [26] W. H. Chi, T. L. Chou, C. N. Han and K. N. Chiang, “Analysis of Thermal Performance of High Power Light Emitting Diodes Package,” Electronics Packaging Technology Conference, Singapore, December 9-12, 2008.
    [27] Y. F. Su, S. Y. Yang, W. H. Chi and K. N. Chiang, “Light Degradation Prediction of High-power Light-emitting Diode Lighting Modules,” International Conference on Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, Bordeaux, April 26-28, 2010.
    [28] S. Murata and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50-micron spaced 8-beam laser diode array,” journal of Applied Physics, Vol. 72, No. 6, pp. 2514-2516, September, 1992.
    [29] E. Hong and N. Narendran, “A method for projecting useful life of LED lighting systems,” 3rd International Conference on Solid State Lighting, San Diego, CA, USA, August 3rd, 2003.
    [30] Y. Xi and E. F. Schubert, “Junction–Temperature Measurement in GaN Ultraviolet Light-Emitting Diodes Using Diode Forward Voltage Method,” Applied Physics Letters, Vol. 85, No. 12, pp. 2163-2165, September 20, 2004.
    [31] JEDEC Standard EIA/JESD51-1, “Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device),” 1995.
    [32] B. Siegal, “Practical Considerations in High Power LED Junction Temperature Measurements,” International Conference on Electronics Manufacturing and Technology, Petaling Jaya, Malaysia, November 8-10, 2007.
    [33] N. Narendran, J. D. Bullough, N. Maliyagoda and A. Bierman, “What Is Useful Life For White Light LEDs,” Journal of the Illuminating Engineering Society, Volume 30, No. 1, pp. 57-67, August-November, 2001.
    [34] N. Narendran and Y. Gu “Life of LED-Based White Light Sources,” Journal of Display Technology, Vol. 1, No. 1, pp. 167-171, September, 2005.
    [35] T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” Journal of Luminescence, Vol. 114, No. 1, pp. 39-42, January, 2005.
    [36] S. Ishizaki, H. Kimura and M. Sugimoto, “Lifetime Estimation of High Power White LEDs,” Journal of Light & Visual Environment, Vol. 31, No. 1, pp. 11, 2007.
    [37] 史光國, 半導體發光二極體及固體照明, 全華圖書, 2005.
    [38] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd edition, Wiley-Interscience, 2006.
    [39] E. F. Schubert, Light-Emitting Diode, 2nd edition, Cambridge University Press, New York, 2006
    [40] M. Plank, The Theory of Heat Radiation, Dover Publications New York, 1959.
    [41] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 2, pp. 310-320, March, 2002.
    [42] J. P. Holman, Heat Transfer, 9th, McGraw-Hill, 2002.
    [43] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th Edition, Wiley, 2002.
    [44] W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, 1954.
    [45] S. Koh, W. V. Driel, and G. Q. Zhang, “Degradation of light emitting diodes: a proposed methodology,” Journal of Semiconductors, V. 32, No. 1, pp. 41-44, January, 2011.
    [46] W. Weibull, A Statistical Theory of the Strength of Materials, Generalstabens litografiska anstalts, 1939.
    [47] S. Liu and X. B. Luo, LED Packaging for Lighting Applications, Wiley, 2011.
    [48] W. H. Chi, T. L. Chou, C. N. Han, S. Y. Yang and K. N. Chiang, “Analysis of Thermal and Luminous Performance of MR-16 LED Lighting Module,” IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 4, pp. 713-721, December, 2010.
    [49] G. Elger, R. Lauterbach, K. Dankwart and C. Zilkens, “Inline Thermal Transient Testing of High Power LED Modules for Solder Joint Quality Control,” 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, Florida, USA, May 31-June 3, 2011.
    [50] ENERGY STAR “Program Requirements for Solid State Lighting Luminaires,” 2008
    [51] E. Nogueira, M. Vazquez, and J. Mateos, “Accelerated life test of high luminosity AlGaInP LEDs,” Microelectronics Reliability, Vol. 52, No. 9-10, pp. 1853-1858, September-October, 2012.
    [52] T. Yanagisawa and T. Kojima, “Degradation of InGaN blue light-emitting diodes under continuous and low-speed pulse operations,” Microelectronics Reliability, Vol. 43, No. 6, pp. 977-980, June, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE