研究生: |
呂登輝 Lu, Teng-Hui |
---|---|
論文名稱: |
以教師觀點評價玩具與STEAM教育關聯性之研究-以親子天下「STEAM好玩具100」為例 A Study on the Relevance of Toys and STEAM Education from Teachers’ Perspectives - An Example of "STEAM Toys 100" from CW Education Media and Publishing |
指導教授: |
邱富源
Chiu, Fu-Yuan |
口試委員: |
陳明秀
Chen, Ming-Hsiu 丘嘉慧 Chiu, Chia-Hui |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 教育與學習科技學系 Education and Learning Technology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 278 |
中文關鍵詞: | STEAM玩具 、STEAM教育 、親子天下雜誌 、教師觀點 |
外文關鍵詞: | STEAM toys, STEAM Education, CW Education Media and Publishing, teachers’ perspectives |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在了解教師對於市售的STEAM玩具與STEAM教育之關聯性,意即玩具本身是否與STEAM的五個領域(科學、科技、工程、藝術以及數學)有所關聯,並且以親子天下雜誌第91期「STEAM好玩具100」當中研究者於研究期間可取得的98種玩具作為研究標的,調查教師對於這98種玩具與STEAM教育的關聯性,並且分析教師對於STEAM玩具的看法是否會因為性別、任教身分、任教階段以及對STEAM教育的瞭解而有所不同。
本研究以調查研究作為研究方法,使用問卷作為研究工具,總共蒐集74份有效問卷,當中36份問卷來自職前教師,另外38份問卷來自現職教師。在問卷資料蒐集與整理完畢以後,透過IBM SPSS 23統計軟體,進行獨立樣本t檢定分析以及皮爾森相關性分析,統計分析的結果如下:
(一) 僅有少數的STEAM玩具在STEAM五元素當中都有高度的關聯性。
(二) 影響本研究STEAM玩具排序最主要的因素是每個玩具在STEAM五元素間得分的差異。
(三) 在本研究98種STEAM玩具當中,只有少數的玩具會因為教師的性別、任教身分以及任教階段不同,而在得分上有顯著差異。
(四) 在本研究98種STEAM玩具當中,有超過一成的玩具會因為教師對於STEAM教育熟悉程度的不同,而在得分上有顯著差異。
(五) 在本研究的Top 10 STEAM玩具當中,若分別以教師的性別和任教身分來分組,在所有玩具的每個STEAM五元素當中,只有少數元素的得分是有顯著差異的。
(六) 在本研究的Top 10 STEAM玩具當中,若分別以教師的任教階段和對STEAM的熟悉程度來分組,在所有玩具的每個STEAM五元素當中,有較多元素的得分是有顯著差異的。
(七) 在Top 10 STEAM玩具當中,每一個玩具科學元素的得分與科技元素的得分都有高度的正相關性,每一個玩具科技元素的得分與工程元素的得分也都有高度的正相關性。
本研究最後根據研究結果,分別針對玩具使用者、教師、STEAM玩具開發商以及後續相關的研究方向提出研究者的建議。
This study aims to understand teachers’ perspectives on the relevance of commercially available STEAM toys and STEAM Education. In other words, it is to study whether the toy itself is related to the five fields of STEAM (science, technology, engineering, art and mathematics). The research targets of this study are the 98 kinds of STEAM toys which the researcher could obtain during the study period from the topic of "STEAM Toys 100" of CW Education Media and Publishing. In addition to investigating teachers' views on the relevance of these 98 toys to STEAM Education, this study also analyzed whether teachers' perceptions of STEAM toys vary depending on gender, teaching status, teaching stage, and understanding of STEAM Education.
This study used survey research as the research method and used questionnaire as the research tool. A total of 74 valid questionnaires were collected, of which 36 were from pre-service teachers and 38 were from current teachers. After the questionnaire data was collected and collated, the researcher used IBM SPSS 23 statistical software to perform independent sample t-test analysis and Pearson correlation analysis. The results of the statistical analysis are as follows:
(1) Only a few STEAM toys have a high degree of relevance among the five elements of STEAM.
(2) The main factor affecting the STEAM toy ranking in this study was the difference in scores between the five elements of STEAM in each toy.
(3) Among the 98 STEAM toys in this study, only a few toys had significant differences in scores due to the teachers' gender, teaching status, and teaching stage.
(4) Among the 98 STEAM toys in this study, more than 10% of the toys had significant differences in scores due to the different levels of understanding of STEAM education of teachers.
(5) Among the STEAM’s five-element scores of the Top 10 STEAM toys in this study, only few elements were significantly different due to different genders or teaching status of teachers.
(6) Among the STEAM’s five-element scores of the Top 10 STEAM toys in this study, there were more elements that were significantly different because of different teaching stage or teachers with different levels of familiarity with STEAM Education.
(7) In the Top 10 STEAM toys, the scores of the Science elements of each toy are highly positively correlated with the scores of the Technology elements. The scores of the Technology elements of each toy are also highly positively correlated with the scores of the Engineering elements.
At the end of the study, based on the research results, the researcher’s suggestions were made for toy users, teachers, STEAM toy developers and related research directions.
1. Asghar, A., Ellington, R., Rice, E., Johnson, F., & Prime, G. M. (2012). Supporting Stem Education in secondary science contexts IJl. Interdisciplinary Journal of Problem-based Learning, 6(2): 4. doi: 10.7771/1541-5015.1349
2. Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60.
3. Bayer Corporation. (2010). Planting the seeds for a diverse U.S. STEM pipeline: A compendium of best practice K-12 STEM education programs. Pittsburgh, PA: Author.
4. Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A preliminary meta-analysis. Journal of STEM education, 12, 23-36.
5. Burton, J., Horowitz, R., & Abeles, H. (2000). Learning in and through the arts: The question of transfer. Studies in Art Education, 41(3), 228-257.
6. Cantrell, P., Pekcan, G., Itani, A., & Velasquez - Bryant, N. (2006). The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education, 95(4), 301-309. doi:10.1002/j.2168-9830.2006.tb00905.x
7. Casad, B. J., & Jawaharlal, M. (2012, June). Learning through guided discovery: An engaging approach to K-12 STEM education. American Society for Engineering Education Conference Proceedings. K-12 and Pre-College Engineering Division, Washington, DC.
8. Clarke, B., & Button, C. (2011). Sustainability transdisciplinary education model: Interface of arts, science, and community (STEM). International Journal of Sustainability in Higher Education, 12(1), 41-54.
9. Connor, A. M., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM:Strategies for Enhancing Engineering & Technology Education. International Journal of Engineering Pedagogies, 5(2), 37-47.
10. Dugger, W. E. (2010, December). Evolution of STEM in the United States. Paper presented at the 6th Biennial International Conference on Technology Education Research, Gold Coast, Queensland, Australia.
11. Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692-699.
12. Ghanbari, S. (2015). Learning across disciplines: A collective case study of two university programs that integrate the arts with STEM. International Journal of Education & the Arts, 16(7). Retrieved from http://www.ijea.org/v16n7/.
13. Kearney, C. (2016). Efforts to increase students’ interest in pursuing mathematics, science and technology studies and careers. National measures taken by 30 countries – 2015 report. Brussels, Belgium: European Schoolnet.
14. Ko, Y., An, J., & Park, N. (2012) Development of Computer, Math, Art Convergence Education Lesson Plans Based on Smart Grid Technology. In: Kim, T., Stocia, A., & Fang, W. (eds) Computer Applications for Security, Control and System Engineering. Communications in Computer and Information Science, vol 339. (pp. 109-114). Springer, Berlin, Heidelberg
15. Lampert, N. (2006). Critical thinking dispositions as an outcome of art education. Studies in Art Education, 47(3), 215-228.
16. Land, M. H. (2013). Full STEAM Ahead: The Benefits of Integrating the Arts Into STEM. Procedia Computer Science, 20, 547-552.
17. Massachusetts Department of Education. (2006). Massachusetts science and technology/engineering curriculum framework. Retrieved from http://www.doe.mass.edu/frameworks/scitech/1006.pdf
18. National Governors Association. (2007). Building a science, technology, engineering and math agenda. Retrieved from http://www.nga.org/files/live/sites/NGA/files/pdf/0702INNOVATION
19. National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: The National Academies Press.
20. Ritz, J. M., & Fan, S.-C. (2015). STEM and technology education: International state-of-the-art. International Journal of Technology and Design Education, 25(4), 429-451. Doi: 10.1007/ s10798-014-9290-z
21. Roberts, A., & Cantu, D. (2012, June). Applying STEM instructional strategies to design and technology curriculum. Paper presented at the PATT 26 Conference, Stockholm, Sweden.
22. Stohlmann M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34.
23. U. S. Department of Education. (2013). Science, technology, engineering and math: education for global leadership. U. S. Department of Education. Retrieved 21 September, 2014, from http://www.ed.gov/sites/default/files/stem-overview.pdf
24. Veselovská, M., Mayerová, K., Kubincová, Z., & Chiu, F. Y. (2018, November). A Pilot Study: Comparing the Work of Children with LEGO WeDo 2.0 in Slovakia and Taiwan. Paper presented at the 11th annual International Conference of Education, Research and Innovation. Seville, Spain.
25. Watson, A. D., & Watson, G. H. (2013). Transitioning STEM to STEAM: Reformation of Engineering education. Journal for Quality & Participation, 36(3), 1-4.
26. Wicklein, R. C., & Schell, J. W. (1995). Case studies of multidisciplinary approaches to integrating mathematics, science and technology education. Journal of Technology Education, 6(2), 59-76.
27. 吳佩容(2018)。Dash 機器人課程對國小中低年級學童程式語言學習態度之影響。國立清華大學教育與學習科技學系碩士論文,未出版,新竹市。
28. 林人龍、游光昭(2005)。水平整合的思考:以MST為導向的九年一貫生活科技課程設計。生活科技教育月刊,38(8),24-41。
29. 林坤誼(2014)。STEM科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),1。
30. 邱富源(2019)。STEAM 玩具對幼兒教育的價值及運用。幼教專題特別企畫:STEAM玩具對幼兒教育的價值,1(1),12-15。
31. 姚經政、林呈彥(2016)。STEM 教育應用於機器人教學—以 6E 教學模式結合差異化教學。科技與人力教育季刊,3(1),53-75。
32. 范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。
33. 范斯淳、楊錦心(2012)。美日科技教育課程及其啟示。教育資料集刊,55, 71-102 。
34. 張玉山、楊雅茹(2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
35. 陳冠吟(2015)。STEM 取向的科技教育-以鼠夾車為例。科技與人力教育季刊,2(1),63-81。
36. 陳珮雯、楊若晨、許家齊、盧諭緯、林欣靜、林竹芸(2017)。STEAM好玩具100。親子天下,91,93-125。
37. 陳毓凱、張基成(2017)。融入新興科技的STEAM桁架塔統整課程發展與教學設計。「2017第六屆工程與科技教育學術研討會」發表之論文,社團法人台灣工程教育與管理學會。
38. 黃子榕、林坤誼(2014)。職前教師於STEM實作課程的知識整合行為研究。科技與人力教育季刊,1(1),18-39。
39. 葉俊巖、羅希哲(2015)。以 Maker 的角度來看臺灣小學的資訊教育。臺灣教育評論月刊,4(12),110-114。
40. 葉栢維(2017)。STEAM 理論融入國小科技實作的活動設計:橡皮筋動力車向前衝。科技與人力教育季刊,4(1),63-75。
41. 蔡蕙文(2008)。STEM教學模式應用於國中自然與生活科技領域教學之研究。國立屏東科技大學技術及職業教育研究所碩士論文,未出版,屏東縣。
42. 蔡釋鋒(2016)。STEAM課程統整模式運用於國中生活科技教學對於學生知識整合應用之研究。國立高雄師範大學工業科技教育學系碩士論文,未出版,高雄市。
43. 簡佑宏、張玉山、簡爾君(2016)。STEM取向準工程課程設計:以二氧化碳賽車單元為例。科技與人力教育季刊,3(1),32-52。
44. 羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活技術領域之研究。人文社會科學研究,3(3),44-66。
45. 羅希哲、蔡慧音、石儒居、詹為淵(2010)。網路專題式學習應用於高中女學生 STEM 知識學習之研究。人文社會科學研究,4(4),115-141。