研究生: |
蕭亦愷 Ivan Hsiao |
---|---|
論文名稱: |
高介電常數閘介電層應用於金氧半電容特性研究 Characteristics of MOS-C Devices with High-k gate Dielectrics |
指導教授: |
張廖貴術
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 高介電常數 、閘介電層 |
外文關鍵詞: | Ta2O5, CoTiO3, gate, dielectrics |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文選擇五氧化二鉭(Ta2O5) 及氧化鈦鈷(CoTiO3)作為高介電係數介電層,並搭配鈦(Ti)及氮化鈦(TiN)金屬閘極做成金氧半電容元件。經由對Ta2O5不同的前處理及沉積後退火處理;以及由對CoTiO3一階段與兩階段氧化退火處理與不同金屬比例組成,來探討兩種不同的高介電材料電特性。在Ta2O5前處理方面,以NH3的表面氮化處理較氮離子佈植的表面處理較為有效。而沈積完Ta2O5之後的退火處理上,比較N2O的退火處理和O2的退火處理,得到以N2O處理的樣本有較高的電容值,且觀察CV圖形的偏移和傾斜狀態可得到以N2O退火處理的樣本會含有較少的界面陷阱電荷和氧化層電荷。在以氧氣對Ta2O5作退火處理的不同時間比較,則以60秒的PDA時間作為較佳的參數,原因為太長的電漿退火處理會造成電漿充電傷害。此外,在電漿傷害的比較上,以N2O退火處理的樣本受到較小的電漿傷害。
在CoTiO3的電性比較方面,從一階段與兩階段氧化退火處理的電性比較上,可以得知以兩階段氧化退火處理的樣本在各個電特性方面都有比較良好的表現,其電容值較高而且漏電流也較小,在可靠度的量測上也有較佳的表現。而在Ti/Co不同組成比例上,從各種電特性的比較中,都可以很清楚地顯示出當金屬中Ti的含量較多時,將會有較佳的電特性,且較不受電漿傷害的影響。
參考文獻
[1] J. P. McVittie, 1st International Symp. On Plasma Process Induced Damage, p. 7, 1996.
[2] S. Krishnan et al, IEEE IEDM, p. 113, 1998.
[3] G. Timp et al, IEDM Tech. Digest, p. 930, 1997
[4] Tung Ming Pan et al, Appl. Phys. Lett. vol. 78 p. 1439.
[5] Jack C. Lee,Ultra-Thin Gate Dielectrics and High-K Dielectric, IEEE EDS Vanguard Series of Independent short Course, p. 202, 2001
[6] I. Asona, IEDM, p. 755, 1998.
[7] Yi-Lee Huang, thesis of National Chiao Tung University, 1997.
[8] Ching-Wu Wang, IEDMS’98, AP-22, p. 219.
[9] Shawming Ma et al, IEEE Electron Device Lett. vol.18, p. 420, 1997.
[10] K. P. Cheung, IEEE Electron Device Lett., vol.15, p. 460, 1994.
[11]P. J. Tzeng, J.C.Li, C.C.Yeh, K.S.Chang-Liao, 4th International Symp. On Plasma Process Induced Damage, p. 100, 1999.
[12] J. King, IEEE EDL p.475, 1994
[13] K. Hashimoto et al, Appl. Phys. Lett., Vol.62, p. 1507, 1993.
[14] Koichi Hashimoto et al, Jpn. J. Appl. Phys. Part 1, vol.33, p. 6013, 1994.
[15] H. J. Tao et al, 3rd International Symp. on Plasma Process Induced Damage, p. 60, 1998.
[16] T. Brozek et al, 1st International Symp. on Plasma Process Induced Damage, p. 177, 1996.
[17] M. Oner et al, 3rd International Symp. on Plasma Process Induced Damage, p. 108, 1998.
[18] K. Hashimoto, 6th Intl. MocroProcess conf., p.114 July, 1993, Hiroshima, Japan.
[19] T. Brozek et al, 1st International Symp. on Plasma Process Induced Damage, p. 81, 1996.
[20] Koichi Hashimoto et al, Jpn. J. Appl. Phys. Part 1, vol.33, p. 6013, 1994.
[21] Chang, Yi-Yuan, thesis of National Tsing Hua university p. 11, 1990.
[22] Y. Okayama et al, Int. Symp. On VLSI Tech. p. 220, 1998.
[23] Tung Ming Pan, Jour. of Appl. Phy. Vol.89, p. 3447, 2001.
[24] Yongjoo Jeon, IEEE IEDM p.797, 1998.
[25] C. G. Parker, IEEE Electron Device Lett., vol. 19, p. 106, April 1998.
[26] T. Yamamoto, VLSI Symp, p. 45, 1997
[27] S. Ma, 1st International Symp. on Plasma Process Induced Damage, p. 20, 1996.
[28] Jack C. Lee,IEEE EDS Vanguard Series of Independent short Course, p. 202, 2001
[29] T. P. Ma, IEEE Trans. Electron Devices, vol. 45, p. 680, March 1998.
[30] Fu-Chien Chiu et al, J. Appl. Phys., Vol. 81, p. 6911,1996
[31] Y. M. Lee, Solid State Electronics, p. 434, 1995
[32] S. M. Sze, Semiconductor device physics and technology, 2nd Ed., John Wily and Sons,p. 235.1985.
[33] T. Dimitroca et al, International conference on Microelectronics, vol, 1, 2000
[34] S. Wolf, Silicon Processing for the VLSI Era, vol. 3.
[35] S. M. Sze, Semiconductor device physics and technology, 2nd Ed., John Wily and Sons,p.442.1985.
[36] Shintaro Yamamichi, et al, IEEE Transactions on Electron Device vol.46,1999.
[37] M'Saad, H, 2000 5th International Symposium on
p. 42, 2000