簡易檢索 / 詳目顯示

研究生: 李泳翰
Li, Yung Han
論文名稱: 以矩形交集偵測路徑相似度
Measuring trajectory similarity via moving rectangle intersection detection
指導教授: 李哲榮
Lee, Che Rung
口試委員: 徐正炘
彭文志
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 26
中文關鍵詞: 軌跡分析相似度衡量移動物件
外文關鍵詞: Trajectory analysis, Similarity measure, Moving objects
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相似度測量在軌跡分析中是一門重要的分類,因為它可以作為很多進階應用上
    的基礎,例如搜尋相似度,軌跡叢聚和軌跡分類。而發現共通的子軌跡在空間
    和時間上的接近程度是相當有用的應用。在這篇論文中我們將會調查兩個軌跡
    之間的相似度背後的意義。不像傳統的相似度測量,我們將會提出一個新的方
    法去計算兩個軌跡之間的相似度。我們將這個方法稱為以矩形交集偵測路徑相
    似度(MRID)。這個方法主要有兩個優勢,第一個是匹配的方式是線段對線段而
    不是傳統方式的點對點,所以表達相似度並不會用距離來表達。第二個是在壓
    縮軌跡之後仍能保持大部分的相似軌跡對。對於這個方法我們主要有三個流
    程,首先我們將所有軌跡用方柱體來表示,然後,對每一對軌跡對,我們找出
    它們的交集的體積並計算出來,最後,我們藉由那些交集體積定義新的相似度
    測量。
    在我們的實驗中,我們使用實地測量的GPS 數據去評估我們的方法的有效性。
    實驗結果表明:(1)在未壓縮的軌跡的情況下,MRID 的精度比LCSS 還高,
    (2)MRID 可以在軌跡壓縮的情況計算相似度,(3)MRID 可以在線性時間內運
    行。


    Similarity measurement is an important problem in trajectory analysis because
    it serves as a foundation for many applications, such as trajectory search, cluster-
    ing, and classi cation. Previously, most methods treat a trajectory as a sequence
    of points, and use point-to-point matching methods to measure the similarity of
    trajectories. In this thesis, we model a trajectory as a sequence of moving rect-
    angles along the time axis. Each moving rectangle creates an oblique rectangular
    column, aka a cuboid, in the three dimensional space spanned by the x-y axes and
    the time domain. The volume of the intersection between the cuboids formed from
    two sequence of moving rectangles is used as the similarity measurement between
    two trajectories. We developed an effective algorithm, called Moving Rectangle In-
    tersection Detection (MRID), to calculate the intersections. MRID runs linear time
    in terms of number of trajectory points, and can be integrated with trajectory com-
    pression algorithms to achieve even faster execution time. Experiments that use real
    GPS data show that MRID has better accuracy and performance than the Longest
    Common Subsequence (LCSS) method, which is a representative algorithm in the
    point based methods.

    Abstract ii Contents iv List of Figures v List of Tables vi List of Algorithms vii 1 Introduction 1 2 Related Work 4 3 MRID Algorithm 7 3.1 Basic de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Finding Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Calculating the Volume of Intersection . . . . . . . . . . . . . . . . . 11 3.4 Similarity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Experiments 19 4.1 Accuracy of Similarity Measurement . . . . . . . . . . . . . . . . . . 19 4.2 Integrity after Compression . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Conclusion 24

    [1] Kevin Buchin, Maike Buchin, Marc van Kreveld, and Jun Luo. Finding long
    and similar parts of trajectories. In Proceedings of the 17th ACM SIGSPATIAL
    International Conference on Advances in Geographic Information Systems, GIS
    '09, pages 296{305, New York, NY, USA, 2009. ACM.
    [2] Lei Chen, M. Tamer  Ozsu, and Vincent Oria. Robust and fast similarity search
    for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
    International Conference on Management of Data, SIGMOD '05, pages 491{
    502, New York, NY, USA, 2005. ACM.
    [3] Lei Chen, M. Tamer  Ozsu, and Vincent Oria. Robust and fast similarity search
    for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
    International Conference on Management of Data, SIGMOD '05, pages 491{
    502, New York, NY, USA, 2005. ACM.
    [4] S. Kaul, M. Gruteser, V. Rai, and J. Kenney. On predicting and compressing
    vehicular gps traces. In 2010 IEEE International Conference on Communica-
    tions Workshops, pages 1{5, May 2010.
    [5] Fernando De Lucca, Siqueira, and Vania Bogorny. Discovering chasing behavior
    in moving object trajectories.
    [6] Microsoft GeoLife Project:. http://research.microsoft.com/en-
    us/projects/geolife/.
    [7] Swaminathan Sankararaman, Pankaj K. Agarwal, Thomas Mlhave, and
    Arnold P. Boedihardjo. Computing similarity between a pair of trajectories.
    CoRR, abs/1303.1585, 2013.
    [8] Kevin Toohey and Matt Duckham. Trajectory similarity measures. SIGSPA-
    TIAL Special, 7(1):43{50, May 2015.
    [9] HaozhouWang, Han Su, Kai Zheng, Shazia Sadiq, and Xiaofang Zhou. An effec-
    tiveness study on trajectory similarity measures. In Proceedings of the Twenty-
    Fourth Australasian Database Conference - Volume 137, ADC '13, pages 13{22,
    Darlinghurst, Australia, Australia, 2013. Australian Computer Society, Inc.
    [10] Y. C. Wu, S. Y. Juan, C. H. Hsu, and C. T. King. Cet: Corner extraction
    technique for efficient characterization of gps tracks. In 2014 International
    Wireless Communications and Mobile Computing Conference (IWCMC), pages
    110{115, Aug 2014.
    [11] C. Wuthishuwong and A. Traechtler. Vehicle to infrastructure based safe tra-
    jectory planning for autonomous intersection management. In ITS Telecommu-
    nications (ITST), 2013 13th International Conference on, pages 175{180, Nov
    2013.
    [12] Zhang Zhang, Kaiqi Huang, and Tieniu Tan. Comparison of similarity measures
    for trajectory clustering in outdoor surveillance scenes. In Proceedings of the
    18th International Conference on Pattern Recognition - Volume 03, ICPR '06,
    pages 1135{1138, Washington, DC, USA, 2006. IEEE Computer Society.
    [13] Yu Zheng and Xiaofang Zhou. Computing with Spatial Trajectories. Springer
    Publishing Company, Incorporated, 1st edition, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE