研究生: |
毛志偉 Mao, Chih Wei |
---|---|
論文名稱: |
促進二氧化硫分解之電化學雙電池之塗佈研究 A study of coating of electrochemical double-cells for promoted SO2 decomposition |
指導教授: |
黃大仁
Huang, Ta Jen |
口試委員: |
葉君棣
黃大仁 竇唯平 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 蜂巢 |
外文關鍵詞: | honeycomb |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工廠排放是二氧化硫的一個主要來源,在現今的工業處理方式中,需要添加大量的吸收劑去中和,耗費了大量的設備成本,並且會產生大量的二次汙染物,增加後端處理的難度,在空氣汙染日趨嚴重,各國政府對於廢氣排放標準更加嚴格之情況下,無疑會讓未來的成本負擔更加巨大。
實驗室所發展之電化學雙電池(Electrochemical double cell, EDC),其利用陰極材料與陽極材料之間產生的電動勢(Electromotive force, EMF)使二氧化硫在觸媒表面上進行分解反應以達到減排的效果。
為更符合實際應用狀況,將EDC的面積放大,使用目前面積體積比最大之蜂巢狀陽極幾何結構來做為基材,可大量節省空間,降低成本時也可達到相同效果。
由於陽極蜂巢狀結構較為複雜,且電解質層塗佈為所有功能層中最重要之步驟,藉由各種塗佈方式以及漿料配比的嘗試,得出最接近商業化平板狀電池片電解質層之結果,以為未來陽極蜂巢的製作奠基。
Nowadays, the emission of factory is one of the source of SO2. In the normal way to deal with SO2, we need a lot of absorbent and neutralizer. The equipment cost is very large, and this way will produce many secondary pollutants which enhance the after treatment difficulty. As the air pollution is growing, the government emission standard becomes stricter and stricter. A company will need more cost in the future which taking bad influence for expenditure.
We developed the electrochemical double cell (EDC) using the electromotive force (EMF) between cathode and anode material to promote the SO2 decomposition on the catalyst surface for reducing the emission of SO2.
According to the real situation, the larger area is needed. Using the anode honeycomb which has the best area volume ratio to be the substrate. It can reduce the space to reach the same result.
In the EDC production process, the electrolyte layer is most important step. The effectiveness depends on the densification of the electrolyte layer. However, basing on the complicate structure of honeycomb, we try different coating method and component ratio of coating solution to reach the effect of commercial cell plate’s electrolyte layer.
1. 李貽華,空氣汙染對植物之影響─二氧化硫(SO2),農作篇(三)植物保護章─四.公害。
2. 教育部高中化學教材資源中心,酸雨專題,汙染物來源。
3. 陳娟、崔淑卿,空氣中二氧化硫對人體的危害及相關問題探討,內蒙古水利,2012,第3期,p. 174-175。
4. 劉玉香,SO2的危害及其流行病學與毒理學研究,生態毒理學報,2007,第二卷,第二期,p. 225-231。
5. 陳重叡,火力發電廠不同性質粉煤對燃燒效率之影響探討-以台中電廠為例,逢甲大學環境工程與科學學系 碩士論文,民國九十八年。
6. 台灣電力公司,燃煤發電機組空汙處理流程。
7. 李火燦,排煙脫硫設備設計、裝機、運轉及維護,行政院及所屬各機關出國報告,民國九十年。
8. Polcik, M., Wilde, L., Haase, J., Brena, B., Cocco, D., Comelli, G., & Paolucci, G. (1996). Adsorption and temperature-dependent decomposition of SO2 on Cu (100) and Cu (111): A fast and high-resolution core-level spectroscopy study. Physical Review B, 53(20), 13720.
9. Rodriguez, J. A., Ricart, J. M., Clotet, A., & Illas, F. (2001). Density functional studies on the adsorption and decomposition of SO2 on Cu (100). Journal of Chemical Physics, 115, 454-465.
10. Steijns, M., Koopman, P., Nieuwenhuijse, B., & Mars, P. (1976). The mechanism of the catalytic oxidation of hydrogen sulfide: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide. Journal of Catalysis, 42(1), 96-106.
11. Haile, S. M. (2003). Fuel cell materials and components. Acta Materialia, 51(19), 5981-6000.
12. Huang, T. J., Wu, C. Y., Hsu, S. H., & Wu, C. C. (2011). Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science, 4(10), 4061-4067.
13. 林育賢,以固態氧化物燃料電池去除氮氧化物之電化學提升研究,國立清華大學化工所 碩士論文,民國一百年。
14. Huang, T. J., & Chou, C. L. (2010). Effect of voltage and temperature on NO removal with power generation in SOFC with V2O5-added LSCF-GDC cathode. Chemical Engineering Journal, 160(1), 79-84.
15. Huang, T. J., Wu, C. Y., & Lin, Y. H. (2011). Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells. Environmental science & technology, 45(13), 5683-5688.
16. Huang, T. J., Hsu, S. H., & Wu, C. Y. (2012). Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit. Environmental science & technology, 46(4), 2324-2329.
17. Buergler, B. E., Grundy, A. N., & Gauckler, L. J. (2006). Thermodynamic equilibrium of single-chamber SOFC relevant methane–air mixtures. Journal of the Electrochemical Society, 153(7), A1378-A1385.
18. Teraoka, Y., Harada, T., & Kagawa, S. (1998). Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides. Journal of the Chemical Society, Faraday Transactions, 94(13), 1887-1891.
19. 周建良,以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究,國立清華大學化工所 博士論文,民國九十八年。
20. Goodenough, J. B. (2000). Ceramic technology: Oxide-ion conductors by design. Nature, 404(6780), 821-823.
21. Xu, N., Zhao, H., Zhou, X., Wei, W., Lu, X., Ding, W., & Li, F. (2010). Dependence of critical radius of the cubic perovskiteABO3oxides on the radius of A-and B-site cations. International journal of hydrogen energy, 35(14), 7295-7301.
22. Mizusaki, J., Tagawa, H., Saito, T., Kamitani, K., Yamamura, T., Hirano, K., ... & Hashimoto, K. (1994). Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2‐H2O Atmospheres. Journal of the Electrochemical Society, 141(8), 2129-2134.
23. Weber, A., & Ivers-Tiffée, E. (2004). Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 127(1), 273-283
24. 朱君瀚,以精密塗佈技術製備高分子發光二極體,國立清華大學化工所 碩士論文,民國一百零一年。
25. Lee, D. H., Choi, J. S., Chae, H., Chung, C. H., & Cho, S. M. (2009). Screen-printed white OLED based on polystyrene as a host polymer. Current Applied Physics, 9(1), 161-164.
26. 江德一,以電化學雙電池/電觸媒蜂巢促進分解二氧化硫及氮氧化物至實用之研究,國立清華大學化工所 博士論文,民國一百零三年。
27. Shimizu, S., Yamaguchi, T., Fujishiro, Y., & Awano, M. (2009). A slurry injection method for the fabrication of multiple microchannel SOFCs. Journal of the American Ceramic Society, 92(5), 1002-1005.
28. Tikkanen, H., Suciu, C., Wærnhus, I., & Hoffmann, A. C. (2011). Dip-coating of 8YSZ nanopowder for SOFC applications. Ceramics International, 37(7), 2869-2877.
29. Sato, T., Todo, N., Kurita, M., Hagiwara, H., Ueno, A., Nishijima, A., & Kiyozumi, Y. (1978). The development of catalysts for simultaneous control of NOx and SOx in flue gases. Chemistry Letters, (10), 1073-1076.