簡易檢索 / 詳目顯示

研究生: 曾元泰
Tseng, Yuan-Tai
論文名稱: 應用於連續免疫偵測之微透析式干涉光纖探針感測器
A Perfusion-based Micro Opto-fluidic System with Gold-nanoparticle Signal Enhancement for Continuously In-situ Immune Sensing
指導教授: 曾繁根
Tseng, Fan-Gang
錢景常
Cheing, Ching-Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 135
中文關鍵詞: 免疫感測器干涉式光纖探針奈米金球表面再生
外文關鍵詞: Immunosensor, Fiber-optic interferometry sensor, Gold-nanoparticle, Surface regeneration
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於建構可應用於活體內 (in vivo) 進行局部 (in situ) 特定蛋白質濃度監控之免疫探針感測系統。此系統結合感測與再生機制,將干涉式光纖、紫外光光纖與微型毛細管整合至一針狀光阻結構中,並於外緣包覆微透析膜完成可重複使用之免疫探針。檢測時,待測之蛋白質分子可經由擴散方式穿過透析膜進入探針內,藉由觀察其與光纖表面接合所造成的干涉圖譜位移達到偵測目地。
    實驗中利用奈米金球增加干涉光程之差異,以提升蛋白質接合訊號靈敏度。經由在光纖表面進行共振腔製作與半反射金薄膜蒸鍍,並透過自組裝分子、氨基酸分子修飾,可偵測出接合在光纖表面之奈米金球 (30nm粒徑),並達到1×1010 particles/ml之偵測極限。此外,根據理論推導與實驗驗證結果,可得知光譜位移量與表面金球接合之顆粒數、大小成正比。應用於免疫檢測部分則先以修飾抗體 (anti-rabbit IgG) 之奈米金球溶液注入探針內,當待測蛋白質-細胞色素抗體 (anti-cytochrome C antibody) 由外部溶液擴散進入時可與其結合,並透過光纖表面修飾之細胞色素C (cytochrome C) 進行免疫辨識。運用此方式可測量之抗體濃度偵測極限可達10 ng/ml。
    為了達到重覆使用以期於定點進行連續偵測,本研究結合新型局部酸洗技術,利用聚乙二醇 (PEG) 包覆光誘發鄰-硝基苯甲醛 (o-nitrobenzaldehyde; o-NBA) 分子,以多模態光纖導入紫外光並以聚焦方式控制其解離氫離子範圍,可使感測器表面免疫鍵結解構而能再度進行感測,並且局限氫離子之分布使其不至於對探針外部環境造成影響。實驗結果並顯示鄰-硝基苯甲醛溶液經紫外光照射可於20秒內由酸鹼值7下降至3.5以下,足夠用以酸洗免疫接合分子表面。此外,此探針感測系統最快之檢測週期可控制在8分鐘以內,未來可針對活體內特定蛋白質分子之微量濃度變化進行量測,例如神經傳導或疾病發生時相關酵素或蛋白質之釋放,以解決目前研究上無法於特定位置快速得知其分子濃度的缺點。


    This study reports a novel perfusion-based micro opto-fluidic system (PMOFS) as a reusable immunosensor for in-situ and continuous protein detection. The PMOFS includes a fiber optic interferometry (FOI) sensor housed in a micro-opto-fluidic chip covered with a microdialysis membrane. It features immune sensing and surface regeneration mechanism for continuous detection.
    A method using gold-nanoparticles (GNPs) to enhance immune-sensing signal is proposed. It is suggested that an enlarged index mismatch and an elongated optical path by GNPs conjugated on recognition proteins will contribute most to signal enhancement in the interference fringe shift. Theoretical and experimental results show that the interference fringe shift is linearly related to both the amount and size of the GNPs binding on the sensor surface. The detected signal for 30 nm GNPs can reach a lowest detection limit of 18 pM (1010 particles/ml). Besides, surface regeneration of the FOI sensor was achieved through local pH level manipulation by means of a photoactive molecule, o-Nitrobenzaldehyde (o-NBA), which triggered the dissociation of immune complexes. Experimental results showed that the pH level of the o-NBA solution can be reduced from 7.0 to 3.5 within 20 seconds under UV irradiation, sufficient for an effective elution process. The o-NBA molecules, contained within poly(ethylene glycol) diacrylate (PEG) complexes, were trapped within the sensing compartment by the microdialysis membrane and would not leak into the outside environment. The pH variation was also limited in the neighborhood of the sensor surface, resulting in a self-contained sensing system.
    In-situ immune detection and surface regeneration of the sensing probe has been successfully carried out for two identical cycles by the same sensing probe, and the cycle time can be less than 8 minutes, which is so far the fastest method for continuous monitoring on protein/peptide molecules. In addition, the interference fringe shift of the sensor shows a linear relationship to the concentration of anti-cytochrome C antibody solution and the detection limit approaches 10 ng/ml. This sensory mechanism has the potential to be applied for in-situ, in-vivo monitoring immune recognition signals in the future.

    Abstract……………………………………………………………………………….i 中文摘要……………………………………………………………………………..ii 誌謝………………………………………………………………………………….iii Table of Contents…………………………………………………………………….iv List of Figures……………………………………………………………………….vii List of Tables………………………………………………………………….…......xv 1 Introduction….…………………………………………………………………..1 2 Literature Review…………………………………………………………......…8 2.1 Theory of thin film interference……………………………...….……...…8 2.2 Conventional interferometry biosensor……………..................................17 2.3 Fiber-optic interferometry biosensor…………………….….....……........24 2.4 Synthetic comparison………………………………………...….…….....28 3 Experimental Setup…...…….……………..……………………...……………30 3.1 Fiber-optic interferometry sensing system………………...….…….........31 3.2 UV illumination system……………………………….…...…….…...…..33 3.3 Microfluidic perfusion system………………………………....................35 4 Fabrication Process……………………………………………...…....…...…....36 4.1 Fiber-optic interferometry sensing probe………………...…….…...……38 4.1.1 Resonant cavity……………………………………...…….…...…....38 4.1.2 Surface modification………………………………...………………42 4.2 SU8 micro-sleeve…………….…………………………...…….…...……45 4.3 Spherical UV fiber lens…………………………….…...…….…………..49 4.4 Integration of sensing probe…………………………………….…...……51 5 Results and Discussions……………………………………………...……........53 5.1 Gold-nanoparticle-enhanced fiber-optic interferometry sensor.………….53 5.1.1 Fundamental parameters optimizing…………………………………54 5.1.1.1 Gold thin film…………………………………………….…….57 5.1.1.2 Mixed-thiols immobilization………….………………………..61 5.1.1.3 Immune reaction of proteins………...…………………………64 5.1.2 Signal enhancement by gold-nanoparticles…………………………..68 5.1.2.1 Sensing theory…………………………………………....…….69 5.1.2.2 Visibility of interference fringe…………………………….…..72 5.1.2.3 Real-time measurement of 30 nm gold-nanoparticles……...…..74 5.1.2.4 Signal enhancement by a gold-nanoparticle…………...….....…78 5.1.2.5 Size effect of gold-nanoparticles…………………………….…81 5.1.3 Immune recognition…………………………….…………………….83 5.1.3.1 Real-time immunological detection…………………………....84 5.1.3.2 Detection limit……………………………………………….…88 5.1.3.3 Thermal effects on fiber-optic interferometry sensor……......…93 5.1.3.4 Non-specific adhesion……………………………………..…...94 5.1.3.5 Simulation of thin film interference………………….…….......99 5.2 Perfusion-based micro opto-fluidic system.………………………..…....104 5.2.1 o-Nitrobenzaldehyde elution method………………………….........105 5.2.2 Sensing principle………………………………………………….…110 5.2.3 Gradient of anti-cytochrome C antibody……………………..…….114 5.2.3.1 Microdialysis method…………………………………..…….114 5.2.3.2 Perfusion-based micro opto-fluidic sensing method…………117 5.2.4 Multi-cycle immune sensing………………………………….…….119 5.2.5 Comparison of conventional acid elution and o-NBA elution……...122 5.2.5.1 Proton leakage to outside environment…………………….....122 5.2.5.2 Elution efficiency……………………………………..………125 5.2.6 Noise issue…………………………………………………….….....126 6 Conclusion…………………………………………………………..……….....127 Reference………………………………………………………………...........…….129

    [1] K. J. Laing and C. J. Secombes, “Chemokines”, Dev. Comp. Immunol., 28, 443-460, 2004.
    [2] L. R. Watkins, S. F. Maier and L. E. Goehler, “Cytokine-to-brain Communication: A Review and Analysis of Alternative Mechanisms”, Life Sci., 57, 1011-1026, 1995.
    [3] T. Lapidot and I. Petit, “Current Understanding of Stem Cell Mobilization: The Roles of Chemokines, Proteolytic Enzymes, Adhesion Molecules, Cytokines, and Stromal Cells”, Exp. Hematol., 30, 973-981, 2002.
    [4] T. A. Shahan, W. G. Sorenson, J. D. Paulauskis, R. Morey and D. M. Lewis, “Concentration- and Time-dependent Upregulation and Release of the Cytokines MIP-2, KC, TNF, and MIP-1α in Rat Alveolar Macrophages Fungal Spores Implicated in Airway Inflammination”, Am. J. Respir. Cell Mol. Biol., 18, 435–440, 1998.
    [5] N. Castanon, C. Medina, C. Mormede and R. Dantzer, “Chronic Administration of Tianeptine Balances Lipopolysaccharide-induced Expression of Cytokines in the Spleen and Hypothalamus of Rats”, Psychoneuroendocrino., 29, 778-790, 2004.
    [6] C. D. Winter, F. Iannotti, A. K. Pringle, C. Trikkas, G. F. Clough and M. K. Church, “A Microdialysis Method for the Recovery of IL-1β, IL-6 and Nerve Growth Factor from Human Brain in Vivo”, J. Neurosci. Meth., 119, 45-50, 2002.
    [7] S. H. Chiou, C. L. Kao, Y. L. Chang, H. H. Ku, Y. J. Tsai, H. T. Lin, C. J. Yen, C. H. Peng, J. H. Chiu and T. H. Tsai, “Evaluation of Anti-Fas Ligand-induced Apoptosis and Neural Differentiation of PC12 Cells Treated with Nerve Growth Factor Using Small Interfering RNA Method and Sampling by Microdialysis”, Anal. Biochem., 363, 46–57, 2007.
    [8] J. Hillman, O. Aneman, M. Persson, C. Andersson, C. Dabrosin and P. Mellergard, “Variations in the Response of Interleukines in Neurosurgical Intensive Care Patients Monitored Using Intracerebral Microdialysis”, J. Neurosurg., 106, 820–825, 2007.
    [9] X. Ao, R. F. Rotundo, D. J. Loegering and J. A. Stenken, “In Vivo Microdialysis Sampling of Cytokines Produced in Mice Given Bacterial Lipopolysaccharide”, J. Microbiol. Meth., 62, 327– 336, 2005.
    [10] S. Kjellstrom, N. Appels, M. Ohlrogge, T. Laurell and G. Marko-Varga, “Microdialysis – A Membrane Based Sampling Technique for Quantitative Determination of Proteins”, Chromatographia, 50, 539–546, 1999.
    [11] A. G. Mignani and F. Baldini, Optical Fiber Sensors: Applications, Analysis, and Future Trends, ed. J. Dakin and B. Culshaw, Artech House, Norwood, vol 4, ch. 10, pp. 129-159, 1988.
    [12] A. Leung, P. M. Shankar and R. Mutharasan, “A Review of Fiber-optic Biosensors”, Sensor. Actuat. B-Chem., 125, 688–703, 2007.
    [13] O. S. Wolfbeis, “Fiber-optic Chemical Sensors and Biosensors”, Anal. Chem., 80, 4269-4283, 2008.
    [14] P. V. Preejith, C. S. Lim, A.Kishen, M. S. John and A. Asundi, “Total Protein Measurement Using a Fiber-optic Evanescent Wave-based Biosensor”, Biotechnol. Lett., 25, 105–110, 2003.
    [15] J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby and J. N. Lin, “Remote Fiber-optic Biosensors Based on Evanescent-excited Fluoro-immunoassay: Concept and Progress”, IEEE T. Electron Dev., 32, 1175-1179, 1985.
    [16] L. A. Obando, D. J. Gentleman, J. R. Holloway and K. S. Booksh, “Manufacture of Robust Surface Plasmon Resonance Fiber Optic Based Dip-probes”, Sensor. Actuat. B-Chem., 100, 439–449, 2004.
    [17] J. F. Masson, L. Obando, S. Beaudoin and K. Booksh, “Sensitive and Real-time Fiber-optic-based Surface Plasmon Resonance Sensors for Myoglobin and Cardiac Troponin I”, Talanta, 62, 865–870, 2004.
    [18] R. S. Chand and B. D. Gupta, “Surface Plasmon Resonance Based Fiber-optic Sensor for the Detection of Peptide”, Sensor. Actuat. B-Chem., 123, 661–666, 2007.
    [19] P. Englebienne, A. V. Hoonacker and M. Verhas, “Surface Plasmon Resonance: Principles, Methods and Applications in Biomedical Sciences”, Spectroscopy, 17, 255–273, 2003.
    [20] J. Gao, T. Gao, Y. Y. Li and M. J. Sailor, “Vapor Sensors Based on Optical Interferometry from Oxidized Microporous Silicon Films”, Langmuir, 18, 2229-2233, 2002.
    [21] C. J. Easley, L. A. Legendre, M. G. Roper, T. A. Wavering, J. P. Ferrance and J. P. Landers, “Extrinsic Fabry-Perot Interferometry for Noncontact Temperature Control of Nanoliter-volume Enzymatic Reactions in Glass Microchips”, Anal. Chem., 77, 1038-1045, 2005.
    [22] S. H. Aref, H. Latif, M. I. Zibaii and M. Afshari, “Fiber Optic Fabry-Perot Pressure Sensor with Low Sensitivity to Temperature Changes for Downhole Application”, Opt. Commun., 269, 322-330, 2007.
    [23] K. R. Kaufman, T. Wavering, D. Morrow, J. Davis, and R. L. Lieber, “Performance Characteristics of a Pressure Microsensor”, J. Biomech., 36, 283–287, 2003.
    [24] V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor and M. R. Ghadiri, “A Porous Silicon-based Optical Interferometric Biosensor”, Science, 278, 840-843, 1997.
    [25] K. P. S. Dancil, D. P. Greiner and M. J. Sailor, “Porous Silicon Optical Biosensor: Detection of Reversible Binding IgG to a Protein A-modified Surface”, J. Am. Chem. Soc., 121, 7925-7930, 1999.
    [26] C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin and G. M. Miskelly, “Biosensing Using Porous Silicon Double-layer Interferometers: Reflective Interferometric Fourier Transform Spectroscopy”, J. Am. Chem. Soc., 127, 11636-11645, 2005.
    [27] E. J. Anglin, M. P. Schwartz, V. P. Ng, L. A. Perelman and M. J. Sailor, “Engineering the Chemistry and Nanostructure of Porous Silicon Fabry-Perot Films for Loading and Release of a Steroid”, Langmuir, 20, 11264-11269, 2004.
    [28] A. Janshoff, K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S. Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor and M. R. Ghadiri, “Macroporous p-type Silicon Fabry-Perot Layers. Fabrication, Characterization, and Applications in Biosensing”, J. Am. Chem. Soc., 120, 12108-12116, 1998.
    [29] H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, P. M. Fauchet, “Macroporous Silicon Microcavities for Macromolecule Detection”, Adv. Funct. Mater., 15, 1851-1859, 2005.
    [30] H. Ouyang, C. C. Striemer and P. M. Fauchet, “Quantitative Analysis of the Sensitivity of Porous Silicon Optical Biosensors”, Appl. Phys. Lett., 88, 163108, 2006.
    [31] L. M. Bonanno and L. A. DeLouise, “Whole Blood Optical Biosensor”, Biosens. Bioelectron., 23, 444–448, 2007.
    [32] J. C. Lee, J. Y. An and B. W. Kim, “Application of Anodized Aluminium Oxide as a Biochip Substrate for a Fabry-Perot Interferometer”, J. Chem. Technol. Biot., 82, 1045-1052, 2007.
    [33] P. I. Nikitin, B. G. Gorshkov, M. V. Valeiko and S. I. Rogov, “Spectral-phase Interference Method for Detecting Biochemical Reactions on a Surface”, Quantum Electron., 30, 1099-1104, 2000.
    [34] P. I. Nikitin, M. V. Valeiko and B. G. Gorshkov, “New Direct Optical Biosensors for Multi-analyte Detection”, Sensor. Actuat. B-Chem., 90, 46-51, 2003.
    [35] I. D. Villar, I. R. Matias, F. J. Arregui and R. O. Claus, “ESA-based In-fiber Nanocavity for Hydrogen-peroxide Detection”, IEEE Trans. Nanotechnol., 4, 187-193, 2005.
    [36] F. J. Arregui, I. R. Matias, Y. Liu, K. M. Lenahan and R. O. Claus, “Optical Fiber Nanometer-scale Fabry-Perot Interferometer Formed by the Ionic Self-assembly Monolayer Process”, Opt. Lett., 24, 596-598, 1999.
    [37] Y. Zhang, H. Shibru, K. L. Cooper and A. Wang, “Miniature Fiber-optic Multicavity Fabry-Perot Interferometric Biosensor”, Opt. Lett., 30, 1021-1023, 2005.
    [38] Y. Zhang, X. Chen, Y. Wang, K. L. Copper and A. Wang, “Microgap Multicavity Fabry-Perot Biosensor”, J. Lightwave Technol., 25, 1797-1804, 2007.
    [39] P. E. Laibinis, B. J. Palmer, S. W. Lee, and G. K. Jennings, Thin films, ed. A. Ulman, Academic Press, San Diego, vol 24, ch. 1, pp. 4-6, 1998.
    [40] R. L. Heredero, S. Martin, R. F. Caleya, A. B. L. Ribeiro, F. M. Araujo, L. A. Ferreira, J. L. Santos and H. Guerrero, “A Study of the Optical Properties of Photopolymer Fabry-Perot Microcavities by a Dual-wavelength Fiber Optic Architecture”, Meas. Sci. Technol., 13, 1094-1099, 2002.
    [41] F. Frederix, K. Bonroy, W. Laureyn, G. Reekmans, A. Campitelli, W. Dehaen and G. Maes, “Enhanced Performance of an Affinity Biosensor Interface Based on Mixed Self-assembled Monolayers of Thiols on Gold”, Langmuir, 19, 4351-4357, 2003.
    [42] F. G. Tseng, S. W. Hung, Z. M. Chang, J. W. Wu, J. K. Hwang, H. M. Huang and C. C. Chieng, “Enhancement of E6 Protein Binding Force on Binding-orientation-sensitive Mixed SAMs”, Proceedings of NTSI Nanotechnology, May 8-12, 442-445, Anaheim, California, 2005.
    [43] C. L. Wu, Y. W. Lin, Y. L. Hsu, F. G. Tseng and C. C. Chieng, “Improvement of Antibody-antigen Binding Efficiency by Dual Mixed Self-assembly Monolayers”, Proceedings of NTSI Nanotechnology, May 8-12, 359-362, Anaheim, California, 2005.
    [44] Y. J. Chuang, F. G. Tseng and W. K. Lin, “Reduction of Diffraction Effect of UV Exposure on SU-8 Negative Thick Photoresist by Air Gap Elimination”, J. Micro System Technologies, 8, 308–313, 2002.
    [45] P. K. Sudeep, S. T. Shibu Joseph and K. Gerge Thomas, “Sensitive Detection of Cysteine and Glutathione Using Gold Nanorods”, J. Am. Chem. Soc., 127, 6516-6517, 2005.
    [46] Y. T. Tseng, C. T. Chang, M. H. Chen and F. G. Tseng, “Nanostructure-Enhanced Fiber-optic Interferometry for Label-free Immune Sensing”, Proceedings of the 22th IEEE International Conference on Micro Electro Mechanical Systems, January 25-29, 296-299, Sorrento, Italy, 2009.
    [47] M. C. Wang, Z. Y. Hsieh, Y. T. Tseng, F. G. Tseng, H. S. Huang, J. E. Wang and H. F. Taylor, “Dual Fiber-optic Fabry-Perot Interferometer Temperature Sensor with Low-cost Light-emitting Diode Light Source”, Japan. J. Appl. Phys., 47, 3236-3239, 2008.
    [48] Y. T. Tseng, Y. J. Chuang, Y. C. Wu, C. S. Yang, M. C. Wang and F. G. Tseng, “A Gold-nanoparticle-enhanced Immune Sensor Based on Fiber Optic Interferometry”, Nanotechnology, 19, 345501, 2008.
    [49] Y. T. Tseng, C. S. Yang and F. G. Tseng, “A Perfusion-based Micro Opto-fluidic System (PMOFS) for Continuously In-situ Immune Sensing”, Lab Chip, 2009, DOI:10.1039/B823449C. (Published)
    [50] C. Y. Cheung, D. J. Green, G. J. Litt and J. A. Laugharn, “High-pressure-mediated Dissociation of Immune Complexes Demonstrated in Model Systems”, Jr, Clin. Chem., 44, 299-303, 1998.
    [51] A. N. Asanov, W. W. Wilson and P. B. Oldham, “Regenerable Biosensor Platform: A Total Internal Reflection Fluorescence Cell with Electrochemical Control”, Anal. Chem., 70, 1156-1163, 1998.
    [52] M. C. Moreno-Bondi, J. Mobley, J. P. Alarie and T. Vo-Dinh, “Antibody-based Biosensor for Breast Cancer with Ultrasonic Regeneration”, J. Biomed. Opt., 5, 350-354, 2000.
    [53] K. Welfle, R. Misselwitz, G. Hausdorf, W. Hohne and H. Welfle, “Conformation, pH-induced Conformational Changes, and Thermal Unfolding of Anti-p24 (HIV-1) Monoclonal Antibody CB4-1 and its Fab and Fc Fragments”, Biochim. Biophys. Acta, 1431, 120-131, 1999.
    [54] A. Kummer and E. C. Y. Li-Chan, “Application of an ELISA-elution assay as a Screening Tool for Dissociation of Yolk Antibody-antigen Complexes”, J. Immunol. Methods, 211, 125-137, 1998.
    [55] M. A. Firer, “Efficient Elution of Functional Proteins in Affinity Chromatography”, J. Biochem. Biophys. Methods, 49, 433-442, 2001.
    [56] A. J. Woodroffe and C. B. Wilson, “An Evaluation of Elution Techniques in the Study of Immune Complex Glomerulonephritis”, J. Immunol., 118, 1788-1794, 1977.
    [57] M. V. George and J. C. Scaiano, “Photochemistry of o-Nitrobenzaldehyde and Related Studies”, J. Phys. Chem., 84, 492-495, 1980.
    [58] S. Abbruzzetti, M. Carcelli, D. Rogolino and C. Viappiani, “Deprotonation Yields, pKa, and Aci-nitro Decay Rates in Some Substituted o-nitrobenzaldehydes”, Photochem. Photobiol. Sci., 2, 796-800, 2003.
    [59] S. Abbruzzetti, E. Crema, L. Masino, A. Vecli, C. Viappiani, J. R. Small, L. J. Libertini and E. W. Small, “Fast Events in Protein Folding: Structural Volume Changes Accompanying the Early Events in the N-I Transition of Apomyoglobin Induced by Ultrafast pH jump”, Biophys. J., 78, 405-415, 2000.
    [60] A. Diaspro, F. Federici, C. Viappiani, S. Krol, M. Pisciotta, G. Chirico, F. Cannone and A. Gliozzi, “Two-Photon Photolysis of 2-nitrobenzaldehyde Monitored by Fluorescent-labeled Nanocapsules”, J. Phys. Chem. B, 107, 11008-11012, 2003.
    [61] J. Choi and M. Terazima, “Energy and Volume Changes Induced by Photoinitiated Proton Releasing Reaction with Apomyoglobin”, Rev. Sci. Instrum., 74, 319-321, 2003.
    [62] F. Fischbach and M. B. Dunning III, A manual of laboratory and diagnostic tests, 8th ed., Lippincott Williams & Wilkins, ch. 5, pp. 310-337, 2008.
    [63] M. Etienne, E. C. Anderson, S. R. Evans, W. Schuhmann, and I. Fritsch, “Feedback-independent Pt Nanoelectrodes for Shear Force-based Constant-distance Mode Scanning Electrochemical Microscopy”, Anal. Chem., 78, 7317-7324, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE