簡易檢索 / 詳目顯示

研究生: 李中陽
Lee,Chung-Yang
論文名稱: ㄧ維鎳矽化物奈米線之結構成長與性質研究
Synthesis and Properties of One-Dimensional Nickel Silicate Nanowires
指導教授: 陳力俊
Chen,Lin-Juann
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 90
中文關鍵詞: 鎳矽化物奈米線Epitaxial nanowires場發特性電阻率
外文關鍵詞: Nickel Silicide Nanowires, 磊晶奈米線, field emission properties, electrical resistivity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    The acicular Ni31Si12 nanowires (NWs) with twins and superlattice structure were described with a simple vapor phase deposition method at 650 ℃. The acicular NWs are several micrometers in length and with diameters of 60-100 nm and 20-40 nm at the streams and tip regions, respectively. The acicular Ni31Si12 NWs have a common {01-5} twin plane along the [01-5] growth direction and have the periodicity of 0.91 nm with one period that consists of four (01-5) planes of the superlattice nanostructure. The periodical twin and superlattice coexist in the Ni31Si12 NWs. The resistivity of the acicular Ni31Si12 NWs was measured to be 558 μΩ cm by two-terminal electrical measurement. The field-enhancement factor β can be calculated to be about 596 for the acicular Ni31Si12 NWs.
    The growth of vertically well-aligned single crystal Ni2Si and Ni31Si12 NWs arrays were respectively reported, for the first time. Highly oriented and large area arrays of NWs were epitaxially grown on Ni2Si and Ni31Si12 films and preferentially formed on Ni foil substrates with a simple vapor phase deposition method in one step. The Ni2Si and Ni31Si12 NWs are several micrometers in length and 20-50 nm and 50-80 nm in diameter, respectively. The resistivities of the Ni2Si and Ni31Si12 NWs were measured to be 21 and 51 μΩ cm by four-terminal electrical measurement, respectively. Both NWs can carry very high currents and possess excellent field emission properties. The growth of vertically well-aligned Ni2Si and Ni31Si12 NWs arrays shall lead to significant advantages in the fabrication of vertical Si nanodevices.
    The synthesis of free-standing single crystal NiSi2 NWs on Ni foil with a simple vapor transport method was reported. The growth of previously elusive Si-rich nickel silicide NWs was achieved with the addition of NiCl2 powders in front of the Ni substrate upstream. The presence of NiCl2 gas enhanced the condensation of Si and suppressed the supply of Ni atoms in the subsequent reactions. As the NWs maintain low resistivity, NiSi2 NWs can carry very high currents and possess excellent field emission properties. The growth of NiSi2 NWs shall lead to significant advantages in the fabrication of Si nanodevices.
    摘 要
    利用水平爐管結合氣相沉積的方法,成功地在鎳箔片上成長針狀式(acicular) 富鎳之鎳矽化合物(Ni31Si12)奈米線(nanowires, NWs),此奈米線同時具有週期性雙晶面和超晶格結構(superlattice sturcutre)等兩項特點。針狀式(acicular) Ni31Si12 奈米線(acicular NWs)具有數十個微米長,其直徑於軀幹區(stems regions)為60-100奈米,於尖端區(tip regions)為20-40奈米。此針狀式奈米線屬{01-5}的雙晶面族,並沿著 [01-5]方向成長,且由四個 (01-5)面所組成超晶格結構之週期性間距為0.91奈米。上述之週期性的雙晶面和超晶格結構是同時共存於同一奈米線上。使用兩點電性量測其電阻率(resistivity)為558 μΩ cm。另其場發射因子(field-enhancement factor β)為596。
    垂直生長且排列整齊的單晶富鎳之鎳矽化合物奈米線陣列(Ni2Si and Ni31Si12 NWs arrays)第一次被成功的報導。於850 和750 ℃下,利用水平爐管結合氣相沉積之一次反應步驟,於鎳箔片上成長磊晶 (epitaxially) 之Ni2Si和Ni31Si12 薄膜。藉此薄膜再次磊晶成長規則且大面積富鎳之鎳矽奈米線(Ni2Si和Ni31Si12 NWs)。成長出的Ni2Si和Ni31Si12奈米線其線長約為幾個奈米長,其直徑則分別約為20-50奈米和50-80奈米。以四點電性測量Ni2Si和Ni31Si12 的電阻率(resistivities)分別為21 和51 μΩ cm。 上述兩種奈米線皆能負荷極高的電流並且擁有極佳的場發射(field emission)特性。排列整齊的垂直奈米線陣列(Ni2Si和Ni31Si12 NWs arrays),將有潛在的優勢應用於垂直矽奈米元件(Si nanodevices)之發展。
    獨立於試片表面,利用氣相傳輸法於鎳片上任意方向生長單晶富矽之鎳矽矽化物奈米線(NiSi2 NWs)第一次被成功的報導。其主要的方法為緊鄰樣品區(鎳片)的前方放上氯化鎳的粉末(NiCl2 powders),然氯化鎳粉末ㄧ經加熱則生成氯化鎳蒸氣,除有助於矽蒸氣的析出外,亦可與鎳片反應再生成回氯化鎳蒸氣,以消耗鎳原子的提供。此富矽之鎳矽矽化物(NiSi2)奈米線因具有良好之低電阻率(resistivities)、極高之負荷電流(high currents)與良好之場發射(field emission)特性,使其有顯著的優勢應用於矽奈米元件(Si nanodevices)之發展。


    Contents Contents I Abstract ……………………………………………………………IV List of Abbreviations and Acronyms …………………………...… VIII Acknowledgments ……………………………………………………. IX Chapter 1 Introduction 1.1 Nanotechnology…………………………………………………… 1 1.2 Applications of Metal Silicides in ULSI…………………………. 2 1.3 Properties of Metal Silicides……………………………………… 5 1.4 Nickel Silicide Nanostructures…………………………………... 10 1.4.1 Thin Film Metal Silicides Nanostructures………………... 10 1.4.2 Silicide Nanowires………………………………………….. 11 1.4.3 Nickel Silicide Nanowires………………………………….. 13 1.5 Scope and Aim of the Thesis…………………………………….. 16 Chapter 2 Experimental Procedures 2.1 Initial Ni substrates cleaning……………………………………. 18 2.2 Thermal Vapor Deposition System……………………………… 18 2.3 Sample Preparations for Transmission Electron Microscope Observation ……………………………………………………. 20 2.3.1 Planview specimen preparation ….……………………….. 20 2.3.2 Cross-sectional specimen preparation………………….… 21 2.4 Transmission Electron Microscopy Observation……..……….…22 2.5 Energy Dispersive Spectrometer Analysis…….……………........ 23 2.6 Scanning Electron Microscopy Observation………………...….. 24 2.7 Powder X-Ray Diffraction Analysis………………………...….... 24 2.8 Field-EmissionMeasurements………………………………....… 24 2.9 Current-Voltage (I-V) Measurements………………………....… 26 2.10 Focus Ion Beam (FIB) System……………………………….…. 26 Chapter 3 Nanowires with Twins and Superlattice of Acicular Ni31Si12 3.1 Motivation ………………………………………….…………….. 28 3.2 Experimental Procedures..………………………………….……. 29 3.3 Results and Discussion ……………………………………...…… 30 3.4 Summary and Conclusions ……………..……..………………… 37 Chapter 4 Vertically Well-Aligned Epitaxial Ni2Si and Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties 4.1 Motivation…………………………….…………………………... 38 4.2 Experimental Procedures …………………………….………...... 40 4.3 Results and Discussion…………………………...………………. 41 4.4 Summary and Conclusions ……………..……..……………….... 55 Chapter 5 Free-standing single crystal NiSi2 nanowires with excellent electrical transport and field emission properties 5.1 Motivation..…...………………………………………...………… 57 5.2 Experimental Procedures ………………………...……………… 58 5.3 Results and Discussion …………………..……………………..... 60 5.4 Summary and Conclusions ……………..…….………………..... 67 Chapter 6 Future Prospects 6.1 The Mechanical Properties of Ni31Si12 Nanowires……………… 69 6.2 The Extension of Vertically Well-Aligned Epitaxial Ni2Si and Ni31Si12 Nanowire Arrays on Single Crystal Ni Foils………..…. 69 6.3 Growth of Nickel Germanide Nanowires………………………. 70 Chapter 7 Summary and Conclusions 7.1 Nanowires with Twins and Superlattice of Acicular Ni31Si12….. 71 7.2 Vertically Well-Aligned Epitaxial Ni2Si and Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties…..………...…. 71 7.3 Free-standing single crystal NiSi2 nanowires with excellent electrical transport and field emission properties….......……….. 72 References …………………………………………………….….…… 74

    References

    Chapter 1
    1. Iijima, S., Helical microtubules of graphitic catbon. Nature 1991, 354, 56-58.
    2. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
    3. Sundaram, M.; Chalmers, S. A.; Hopkins, P. F.; Gossard, A. C., New Quantum structures Science 1991, 254,1326-1335.
    4. Krans, J. M.; Vanruitenbeek, J. M.; Fisun, V. V.; Yanson, I. K.; Dejongh, L. J., The signature of conductance quantization in metallic point contacts. Nature 1995, 375, 767-769.
    5. Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R., Architectonic quantum dot solids. Acc. Chem. Res. 1999, 32, 415-423.
    6. Bjork, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L., Nanowire resonant tunneling diodes. Appl. Phys. Lett. 2002, 81, 4458-4460.
    7. Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M., Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
    8. Li, J.; Papadopoulos, C.; Xu, J., Nanoelectronics - Growing Y-junction carbon nanotubes. Nature 1999, 402, 253-254.
    9. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M., Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999, 286, 1550-1552.
    10. Balzani, V.; Credi, A.; Venturi, M., The bottom-up approach to molecular-level devices and machines. Chem. Eur. J. 2002, 8, 5524-5532.
    11. Drexler, K. E., Engines of Creation, The Coming Era of Nanotechnology,. Anchor Press, New York New York, 1986.
    12. International Technology Roadmap for Semiconductors (ITRS). http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf.
    13. Murarka, S. P., Metals and Alloys,” in Metallization: Theory and Practice for VLSI and ULSI. Butterworth-Heinemann: Boston, 1993.
    14. Ting, C. Y.; Hu, G. J.; Iyer, S. S.; Osburn, C. M.; Schweighar, A. M., The use of TiSi2 in a self-aligned silicide technology. Proc. of the Electrochem. Soc. Meeting, 1982, 129, C326-C326.
    15. Alperin, M. E.; Holloway, T. C.; Haken, R. A.; Gosmeyer, C. D.; Karnaugh, R. V.; Parmantie, W. D., Development of the self-aligned silicide process for VLSI application. IEEE Trans. Electron Devices 1985, ED-32, 141-149.
    16. Jeon, H.; Sukow, C. A.; Honeycutt, J. W.; Rozgonyi, G. A.; Nemanich, R. J., Morphology and phase-stability of TiSi2 on Si. J. Appl. Phys. 1992, 71, 4269-4276.
    17. Baklanov, M. R.; Vanhaelemeersch, S.; Storm, W.; Kim, Y. B.; Vandervorst, W.; Maex, K., Surface processes occurring on TiSi2 and CoSi2 in fluorine-based plasmas. reactive ion etching in CF4/CHF3 plasmas. J. Vac. Sci. Technol. A 1997, 15, 3005-3014.
    18. Handbook of Binary Alloy Phase Diagrams (ASM International ISBN PC-087170-1, 1996).
    19. Chen, L. J., Silicide Technology for Integrated Circuits. The Institution of Electrical Engineers: London: London, 2004.
    20. Tu, K. N.; Mayer, J. W., Silicide Formation, in Thin Films-Interdiffusion and Reactions. Wiley: New York, 1978.
    21. Kang, C. Y.; Lysaght, P.; Choi, R.; Lee, B. H.; Rhee, S. J.; Choi, C. H.; Akbar, M. S.; Lee, J. C., Nickel-silicide phase effects on flatband voltage shift and equivalent oxide thickness decrease of hafnium silicon oxynitride metal-silicon-oxide capacitors. Appl. Phys. Lett. 2005, 86, 222906-1-3.
    22. Kittl, J. A.; Lauwers, A.; Veloso, A.; Hoffmann, T.; Kubicek, S.; Niwa, M.; van Dal, M. J. H.; Pawlak, M. A.; Brus, S.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S., CMOS integration of dual work function phase-controlled Ni fully silicided gates (NMOS : NiSi, PMOS : Ni2Si, and Ni31Si12) on HfSiON. IEEE Electron Device Lett. 2006, 27, 966-968.
    23. Morimoto, T.; Momose, H. S.; Iinuma, T.; Kunishima, I.; Suguro, K.; Okano, H.; Katakabe, I.; Nakajima, H.; Tsuchiaki, M.; Ono, M.; Katsumata, Y.; Iwai, H., A NiSi salicide technology for advanced logic devices. IEDM Tech. Dig. 1991, 653-656.
    24. Ohguro, T.; Nakamura, S.; Koike, M.; Morimoto, T.; Nishiyama, A.; Ushiku, Y.; Yoshitomi, T.; Ono, M.; Saito, M.; Iwai, H., Analysis of resistance behavior in Ti-salicided and Ni-aslicided polysicion films. IEEE Trans. Electron Devices 1994, 41, 2305-2317.
    25. Maex, K., Silicides for Integrated-Circuits - TiSi2 and CoSi2. Mater. Sci. Eng. R 1993, 11, 53-153.
    26. Chen, S. Y.; Chen, L. J., Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si. Appl. Phys. Lett. 2005, 87, 253111-1-3.
    27. Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; Chen, L. J.; Tsai, C. J.; Hsu, C. M.; Kung, S. C., Synthesis and characterization of metallic TaSi2 nanowires. Appl. Phys. Lett. 2005, 87, 223113-1-3.
    28. Decker, C. A.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R.; Evans, D. R., Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 2004, 84, 1389-1391.
    29. Lin, J. F.; Bird, J. P.; He, Z.; Bennett, P. A.; Smith, D. J., Signatures of Quantum Transport in self-assembled epitaxial nicke silicide nanowires. Appl. Phys. Lett. 2004, 85, 281-283.
    30. Chen, Y.; Ohlberg, D. A. A.; Medeiros-Ribeiro, G.; Chang, Y. A.; Williams, R. S., Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Appl. Phys. Lett. 2000, 76, 4004-4006.
    31. Chen, Y.; Ohlberg, D. A. A.; Williams, R. S., Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys. 2002, 91, 3213-3218.
    32. Preinesberger, C.; Becker, S. K.; Vandre, S.; Kalka, T.; Dahne, M., Structure of DySi2 nanowires on Si(001). J. Appl. Phys. 2002, 91, 1695-1697.
    33. Stevens, M.; He, Z.; Smith, D. J.; Bennett, P. A., Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction. J. Appl. Phys. 2003, 93, 5670-5674.
    34. Nogami, J.; Liu, B. Z.; Katkov, M. V.; Ohbuchi, C.; Birge, N. O., Self-assembled rare-earth silicide nanowires on Si(001). Phys. Rev. B 2001, 63, 233305.

    35. Xiang, B.; Wang, Q. X.; Wang, Z.; Zhang, X. Z.; Liu, L. Q.; Xu, J.; Yu, D. P., Synthesis and field emission properties of TiSi2 nanowires. Appl. Phys. Lett. 2005, 86, 243103-1-3.
    36. Zou, C.; Zhang, X.; Jing, G.; Zhang, J.; Liao, Z.; Yu, D. P., Synthesis and electrical properties of TiSi2 nanocables. Appl. Phys. Lett. 2008, 92, 253102-1-3.
    37. Szczech, J. R.; Schmitt, A. L.; Bierman, M. J.; Jin, S., Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 2007, 19, 3238-3243.
    38. Zhou, F.; Szczech, J.; Pettes, M. T.; Moore, A. L.; Jin, S.; Shi, L., Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Lett. 2007, 7, 1649-1654.
    39. Lian, O. Y.; Thrall, E. S.; Deshmukh, M. M.; Park, H., Vapor-phase synthesis and characterization of epsilon-FeSi nanowires. Adv. Mater. 2006, 18, 1437-1440.
    40. Schmitt, A. L.; Bierman, M. J.; Schmeisser, D.; Himpsel, F. J.; Jin, S., Synthesis and properties of single-crystal FeSi nanowires. Nano Lett. 2006, 6, 1617-1621.
    41. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B., Magnetic properties of single-crystalline CoSi nanowires. Nano Lett. 2007, 7, 1240-1245.
    42. Kittl, J. A.; Prinslow, D. A.; Apte, P. P.; Pas, M. F., Kinetics and nucleation model of the C49 to C54 phase-transformation in TiSi2 thin-film on deep-sub-micron N(+) type polycrystalline silicon line. Appl. Phys. Lett. 1995, 67, 2308-2310.
    43. Kim, G. B.; Yoo, D. J.; Baik, H. K.; Myoung, J. M.; Lee, S. M.; Oh, S. H.; Park, C. G., Improved thermal stability of nisilicide on Si (100) through reactive deposition of Ni,. J. Vac. Sci. Technol. B 2003, 21, 319-322.
    44. Decker, C. A.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R.; Evans, D. R., Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 2004, 84, 1389-1391.
    45. Yan, X. Q.; Yuan, H. J.; Wang, J. X.; Liu, D. F.; Zhou, Z. P.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S., Synthesis and characterization of a large amount of branched Ni2Si nanowires. Appl. Phys. A 2004, 79, 1853-1856.
    46. Kim, J.; Anderson, W. A., Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films 2005, 483, 60-65.
    47. Kim, J.; Anderson, W. A.; Song, Y. J.; Kim, G. B., Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 2005, 86, 253101-1-3.
    48. Song, Y. P.; Jin, S., Synthesis and properties of single-crystal beta(3)-Ni3Si nanowires. Appl. Phys. Lett. 2007, 90, 173122-1-3.
    49. Song, Y. P.; Schmitt, A. L.; Jin, S., Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007, 7, 965-969.
    50. Lee, K. S.; Mo, Y. H.; Nahm, K. S.; Shim, H. W.; Suh, E. K.; Kim, J. R.; Kim, J. J., Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chem. Phys. Lett. 2004, 384, 215-218.
    51. Zhang, Z.; Hellstrom, P. E.; Ostling, M.; Zhang, S. L.; Lu, J., Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12. Appl. Phys. Lett. 2006, 88, 043104-1-3.
    52. Zhang, Z.; Lu, J.; Hellstrom, P. E.; Ostling, M.; Zhang, S. L., Ni2Si nanowires of extraordinarily low resistivity. Appl. Phys. Lett. 2006, 88, 213103-1-3.
    53. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.
    54. Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen, L. J.; Tu, K. N., In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 2007, 7, 2389-2394.
    55. Dong, L. F.; Bush, J.; Chirayos, V.; Solanki, R.; Jiao, J., Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 2005, 5, 2112-2115.

    Chapter 2
    1. Sheng, T. T. and Chang, C. C., Transmission electron microscopy of cross section of large scale integrated circuits, IEEE Trans. Electron Devices 1976, ED-23, 531-553.
    2. Fowler, R. H. and Nordheim, L. W., Electron emission in intense electric fields. Proc. R. Soc. London, Ser. A 1928, 119, 173
    3. Lee, C. Y.; Tseng, T. Y.; Li, S. Y.; Lin, P., Single-crystalline MgxZn1-xO (0≦x ≦0.25) nanowires on glass substrates obtained by a hydrothermal method: growth, structure and electrical characteristics. Nanotechnol. 2005, 16, 1105-1111.

    Chapter 3
    1. Chen, L. J., Silicide Technology for Integrated Circuits. The Institution of Electrical Engineers: London: 2004.
    2. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.
    3. Kittl, J. A.; Lauwers, A.; Demeurisse, C.; Vrancken, C.; Kubicek, S.; Absil, P.; Biesemans, S., Direct evidence of linewidth effect: Ni31Si12 and Ni3Si formation on 25 nm Ni fully silicided gates. Appl. Phys. Lett. 2007, 90, 172107-1-3.
    4. Chen, L. J., Metal silicides: An integral part of microelectronics. JOM 2005, 57, 24-30.
    5. Chen, L. J.; Chen, S. Y.; Chen, H. C., Nanoscale iron disilicides. Thin Solid Films 2007, 515, 8140-8143.
    6. Morales, A. M.; Lieber, C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
    7. Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., TaSi2 nanowires: A potential field emitter and interconnect. Nano Lett. 2006, 6, 1637-1644.
    8. Hsu, H. C.; Wu, W. W.; Hsu, H. F.; Chen, L. J., Growth of high-density titanium silicide nanowires in a single direction on a silicon surface. Nano Lett. 2007, 7, 885-889.
    9. Schmitt, A. L.; Bierman, M. J.; Schmeisser, D.; Himpsel, F. J.; Jin, S., Synthesis and properties of single-crystal FeSi nanowires. Nano Lett. 2006, 6, 1617-1621.

    10. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B., Magnetic properties of single-crystalline CoSi nanowires. Nano Lett. 2007, 7, 1240-1245.
    11. Decker, C. A.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R.; Evans, D. R., Directed growth of nickel silicide nanowires. In Appl. Phys. Lett., 2004; Vol. 84, pp 1389-1391.
    12. Kim, J.; Anderson, W. A.; Song, Y. J.; Kim, G. B., Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 2005, 86, 253101-1-3.
    13. Yan, X. Q.; Yuan, H. J.; Wang, J. X.; Liu, D. F.; Zhou, Z. P.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S., Synthesis and characterization of a large amount of branched Ni2Si nanowires. Appl. Phys. A 2004, 79, 1853-1856.
    14. Song, Y. P.; Schmitt, A. L.; Jin, S., Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007, 7, 965-969.
    15. Kim, J.; Shin, D. H.; Lee, E. S.; Han, C. S.; Park, Y. C., Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 253103-1-3.
    16. Hao, Y. F.; Meng, G. W.; Wang, Z. L.; Ye, C. H.; Zhang, L. D., Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. Nano Lett. 2006, 6, 1650-1655.
    17. Xiong, Q. H.; Wang, J.; Eklund, P. C., Coherent twinning phenomena: Towards twinning superlattices in III-V semiconducting nanowires. Nano Lett. 2006, 6, 2736-2742.
    18. Johansson, J.; Karlsson, L. S.; Svensson, C. P. T.; Martensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W., Structural properties of (111)B-oriented III-V nanowires. Nature Mater. 2006, 5, 574-580.

    Chapter 4
    1. Chen, L. J., Silicide Technology for Integrated Circuits. The Institution of Electrical Engineers: London: 2004.
    2. Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Cheze, C.; Riechert, H.; Lugli, P.; Kreupl, F., Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660-2666.
    3. Hu, Y. J.; Xiang, J.; Liang, G. C.; Yan, H.; Lieber, C. M., Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925-930.
    4. Zhang, S. L.; Ostling, M., Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State and Mater. Sci. 2003, 28, 1-129.
    5. Chen, L. J., Metal silicides: An integral part of microelectronics. JOM 2005, 57, 24-30.
    6. Kittl, J. A.; Lauwers, A.; Veloso, A.; Hoffmann, T.; Kubicek, S.; Niwa, M.; van Dal, M. J. H.; Pawlak, M. A.; Brus, S.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S., CMOS integration of dual work function phase-controlled Ni fully silicided gates (NMOS : NiSi, PMOS : Ni2Si, and Ni31Si12) on HfSiON. IEEE Electron Device Lett. 2006, 27, 966-968.
    7. Decker, C. A.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R.; Evans, D. R., Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 2004, 84, 1389-1391.
    8. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.
    9. Kim, J.; Anderson, W. A.; Song, Y. J.; Kim, G. B., Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 2005, 86, 253101-1-3.
    10. Kim, C. J.; Kang, K.; Woo, Y. S.; Ryu, K. G.; Moon, H.; Kim, J. M.; Zang, D. S.; Jo, M. H., Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 2007, 19, 3637-3642.
    11. Yan, X. Q.; Yuan, H. J.; Wang, J. X.; Liu, D. F.; Zhou, Z. P.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S., Synthesis and characterization of a large amount of branched Ni2Si nanowires. Appl. Phys. A 2004, 79, 1853-1856.
    12. Song, Y. P.; Schmitt, A. L.; Jin, S., Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007, 7, 965-969.
    13. Kim, J.; Shin, D. H.; Lee, E. S.; Han, C. S.; Park, Y. C., Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 253103-1-3.
    14. Song, Y. P.; Jin, S., Synthesis and properties of single-crystal β(3)-Ni3Si nanowires. Appl. Phys. Lett. 2007, 90, 173122-1-3.
    15. Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen, L. J.; Tu, K. N., In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 2007, 7, 2389-2394.
    16. Zhang, Z.; Hellstrom, P. E.; Ostling, M.; Zhang, S. L.; Lu, J., Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12. Appl. Phys. Lett. 2006, 88, 043104-1-3.
    17. Fang, X. S.; Bando, Y.; Ye, C. H.; Shen, G. Z.; Gautam, U. K.; Tang, C. C.; Golberg, D., Si nanowire semisphere-like ensembles as field emitters. Chem. Commun. 2007, 4093-4095.
    18. Chen, L. J., Silicon nanowires: the key building block for future electronic devices. J. Mater. Chem. 2007, 17, 4639-4643.
    19. Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M., The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69-71.
    20. Lang, C.; Kodambaka, S.; Ross, F. M.; Cockayne, D. J. H., Real time observation of GeSi/Si(001) island shrinkage due to surface alloying during Si capping. Phys. Rev. Lett. 2006, 97, 226104-1-4.
    21. Cui, Y.; Lieber, C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.
    22. Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
    23. Hsin, C. L.; He, J. H.; Lee, C. Y.; Wu, W. W.; Yeh, P. H.; Chen, L. J.; Wang, Z. L., Lateral self-aligned p-type In2O3 nanowire arrays epitaxially grown on Si substrates. Nano Lett. 2007, 7, 1799-1803.

    24. Kittl, J. A.; Pawlak, M. A.; Lauwers, A.; Demeurisse, C.; Opsomer, K.; Anil, K. G.; Vrancken, C.; van Dal, M. J. H.; Veloso, A.; Kubicek, S.; Absil, P.; Maex, K.; Biesemans, S., Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates. IEEE Electron Device Lett. 2006, 27, 34-36.
    25. Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., TaSi2 nanowires: A potential field emitter and interconnect. Nano Lett. 2006, 6, 1637-1644.
    26. Kang, C. Y.; Lysaght, P.; Choi, R.; Lee, B. H.; Rhee, S. J.; Choi, C. H.; Akbar, M. S.; Lee, J. C., Nickel-silicide phase effects on flatband voltage shift and equivalent oxide thickness decrease of hafnium silicon oxynitride metal-silicon-oxide capacitors. Appl. Phys. Lett. 2005, 86, 222906-1-3.
    27. Lu, W.; Lieber, C. M., Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841-850.

    Chapter 5
    1. Chen, L. J., Metal silicides: An integral part of microelectronics. JOM 2005, 57, 24-30.
    2. Zhang, S. L.; Ostling, M., Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State and Mater. Sci. 2003, 28, 1-129.
    3. Hu, Y. J.; Xiang, J.; Liang, G. C.; Yan, H.; Lieber, C. M., Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925-930.
    4. Kittl, J. A.; Lauwers, A.; Veloso, A.; Hoffmann, T.; Kubicek, S.; Niwa, M.; van Dal, M. J. H.; Pawlak, M. A.; Brus, S.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S., CMOS integration of dual work function phase-controlled Ni fully silicided gates (NMOS : NiSi, PMOS : Ni2Si, and Ni31Si12) on HfSiON. IEEE Electron Device Lett. 2006, 27, 966-968.
    5. Yeh, P. H.; Yu, C. H.; Chen, L. J.; Wu, H. H.; Liu, P. T.; Chang, T. C., Low-power memory device with NiSi2 nanocrystals embedded in silicon dioxide layer. Appl. Phys. Lett. 2005, 87, 193504-1-3.
    6. Zhu, S. Y.; Yu, M. B.; Lo, G. Q.; Kwong, D. L., Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 2008, 92, 081103-1-3.
    7. Lian, O. Y.; Thrall, E. S.; Deshmukh, M. M.; Park, H., Vapor-phase synthesis and characterization of epsilon-FeSi nanowires. Adv. Mater. 2006, 18, 1437-1440.
    8. Szczech, J. R.; Schmitt, A. L.; Bierman, M. J.; Jin, S., Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 2007, 19, 3238-3243.
    9. Seo, K.; Varadwaj, K. S. K.; Cha, D.; In, J.; Kim, J.; Park, J.; Kim, B., Synthesis and electrical properties of single crystalline CrSi2 nanowires. J. Phys. Chem. C 2007, 111, 9072-9076.
    10. Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., TaSi2 nanowires: A potential field emitter and interconnect. Nano Lett. 2006, 6, 1637-1644.
    11. Schmitt, A. L.; Bierman, M. J.; Schmeisser, D.; Himpsel, F. J.; Jin, S., Synthesis and properties of single-crystal FeSi nanowires. Nano Lett. 2006, 6, 1617-1621.
    12. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B., Magnetic properties of single-crystalline CoSi nanowires. Nano Lett. 2007, 7, 1240-1245.
    13. Kim, C. J.; Kang, K.; Woo, Y. S.; Ryu, K. G.; Moon, H.; Kim, J. M.; Zang, D. S.; Jo, M. H., Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 2007, 19, 3637-3642.
    14. Decker, C. A.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R.; Evans, D. R., Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 2004, 84, 1389-1391.
    15. Kim, J.; Anderson, W. A.; Song, Y. J.; Kim, G. B., Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 2005, 86, 253101-1-3.
    16. Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen, L. J.; Tu, K. N., In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 2007, 7, 2389-2394.
    17. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.
    18. Yan, X. Q.; Yuan, H. J.; Wang, J. X.; Liu, D. F.; Zhou, Z. P.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S., Synthesis and characterization of a large amount of branched Ni2Si nanowires. Appl. Phys. A 2004, 79, 1853-1856.
    19. Song, Y. P.; Schmitt, A. L.; Jin, S., Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007, 7, 965-969.
    20. Kim, J.; Shin, D. H.; Lee, E. S.; Han, C. S.; Park, Y. C., Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 253103-1-3.
    21. Song, Y. P.; Jin, S., Synthesis and properties of single-crystal beta(3)-Ni3Si nanowires. Appl. Phys. Lett. 2007, 90, 173122-1-3.
    22. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Wu, W. W.; Chen, L. J., Vertically Well-Aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties. Appl. Phys. Lett. 2008, 93, 113109-1-3.
    23. Chen, S. Y.; Chen, L. J., Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si. Appl. Phys. Lett. 2005, 87, 253111-1-3.
    24. Chen, L. J., Silicide Technology for Integrated Circuits. The Institution of Electrical Engineers: London: 2004.
    25. Gambino, J. P.; Colgan, E. G., Silicides and ohmic contacts. Mater. Chem. Phys. 1998, 52, 99-146.
    26. Yeh, P. H.; Chen, L. J.; Liu, P. T.; Wang, D. Y.; Chang, T. C., Metal nanocrystals as charge storage nodes for nonvolatile memory devices. Electrochim. Acta 2007, 52, 2920-2926.
    27 Yang, P., Chemistry and physics of silicon nanowires. Dalton Trans. 2008, 33, 4387-4391.

    Chapter 6
    1. Hsin, C. L.; Mai W.; Gu,Y. D.; Gao, Y. F.; Huang, C. T.; Liu, Y. Z.; Chen, L. J.; Wang, Z. L., Elastic Properties and Buckling of Silicon Nanowires. Adv. Mater. 2008, 20, 1-5
    2. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D., Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973-977.
    3. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire Dye-Sensitized Solar Cells, Nat. Mater. 2005, 4, 455-459.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE