研究生: |
馬綱廷 Ma, Kang Ting |
---|---|
論文名稱: |
運輸問題之進階敏感度分析 Advanced Sensitivity Analysis of the Transportation Problem |
指導教授: |
溫于平
Wen, Ue Pyng 林吉仁 Lin, Chi Jen |
口試委員: |
王小璠
Wang, Hsiao Fan 黎漢林 Li, Han Lin 時序時 Shih, Hsu Shih 張炳騰 Chang Ping Teng |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 運輸問題 、敏感度分析 、退化解 、標記演算法 、供應鏈管理 |
外文關鍵詞: | Transportation problem, Sensitivity analysis, Degenerate optimal solution, Labeling algorithm, Supply chain management |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文考慮一個設置運輸部門的批發公司,該公司擁有倉庫以及零售店,藉由求解運輸問題能夠制定運輸部門長期的運輸計劃(供需平衡)。由於運輸問題的參數通常只是估計值,因此,為了瞭解成本、供給量與需求量的變化對運輸計畫造成的影響,運輸部門的決策者通常會進行敏感度分析。此外,若決策者有一筆經費可以用來改善運輸效率,敏感度分析可以提供決策者在不改變其短期策略下,須增加/減少那些倉庫的供給量或是零售店的需求量。許多文獻已經提出進階敏感度分析以解決主問題退化或是對偶問題退化對傳統敏感度分析所造成的影響。然而,文獻中大多是探討線性規劃問題,很少有討論運輸問題之進階敏感度分析,此外,文獻中採用輔助縮減問題來求得參數的敏感度分析範圍,因此當倉庫及零售店的數目很多時,求得所有參數的進階敏感度分析範圍必須消耗大量時間。故本研究針對以下三個議題推導出輔助縮減問題,分別是:(1)退化運輸問題成本係數之型二敏感度分析;(2)保持最佳路徑下運輸問題右手邊係數敏感度分析;以及(3)對偶問題退化運輸問題之右手邊係數型三敏感度分析。並藉由輔助縮減問題推出運輸問題敏感度分析的性質,據以發展標記演算法,使得在演算步驟中加入觀察到運輸問題敏感度分析的性質來提升演算的速度。研究結果顯示,針對這三個議題,標記演算法在求解的效果上,比傳統型一敏感度分析的範圍來的大。而在求解的速度上,標記演算法求解速度也比輔助縮減問題還快,因此不論是從管理意涵與求解速度來看,進階敏感度分析較傳統敏感度分析更適用於解決實務問題。
A wholesale company with warehouses and retail stores has its own transportation department, which is considered in this dissertation. A long-term shipping plan from warehouses to retail stores can be obtained by the transportation problem. Since the parameters of the transportation usually are estimators, a sensitivity analysis is usually adopted to realize the perturbations of parameters to the shipping plan. In addition, if decision maker has a budget to improve the shipping plan in short-term, sensitivity analysis can address the problem that how to reallocate the resources. Many papers in the literatures point out the influences of degenerate optimal solutions to the traditional sensitivity analysis, then propose advanced sensitivity analysis. However, most papers mention about advanced sensitivity analysis of a linear programming problem, but a few papers mention about advanced sensitivity analysis of the transportation problem. In addition, papers in the literature propose the auxiliary reduced model to obtain the perturbation ranges of advanced sensitivity analysis. Once the number of warehouses and retail stores increase, the computational time would increase dramatically. In this dissertation, three major issues are addressed: (1) Type II sensitivity analysis of cost coefficients of the degenerate transportation problem; (2) Optimal-routes invariant sensitivity analysis for supplies and demands when dual optimal solutions are degenerate; (3) Type III sensitivity analysis for right-hand-side parameters in the transportation problem with dual degenerate optimal solutions. We propose the auxiliary reduced models and observe some properties of each auxiliary reduced model, then develop the algorithms with labeling procedure to address the above issues, and consider the observed properties in the procedures of the algorithms. The computational results show that the proposed algorithms can provide more complete perturbation ranges to decision makers. The computational time of the algorithms with labeling procedure are more efficient than the computational time of auxiliary reduce models.
Aarvik, O., & Randolph, P., (1975). The application of linear programming to the determination of transmission fees in an electrical power network. Interfaces 6, 47-49.
Adlakha, V., Arsham, H. (1998a). Managing cost uncertainties in transportation and assignment problems. Journal of Applied Mathematics and Decision Science, 2, 65-104.
Adlakha, V. G., Arsham, H. (1998b). Distribution-routes stability analysis of the transportation problem. Optimization, 43, 47-72.
Adlakha, V., & Kowalski, K., (1998). A quick sufficient solution to the more-for-less paradox in the transportation problem. Omega 26, 541-547.
Adlakha, V., & Kowalski, K., (2000). A note on the procedure MFL for a more-for-less solution in transportation problems. Omega 28, 481-483.
Arsham, H. (1992). Postoptimality analyses of the transportation problem. The Journal of the Operational Research Society, 43, 121-139.
Arsham, H., (2007). Construction of the largest sensitivity region for general linear programs. Applied Mathematics and Computation 189, 1435-1447.
Arsham, H., Kahn, A. B. (1989). Simplex-type algorithm for general transportation problems: an alternative to stepping-Stone. The Journal of the Operational Research Society, 40, 581-590.
Badra, N. M., (2007). Sensitivity analysis of transportation problems. Journal of Applied Sciences Research 3, 668-675.
Balinski, M. L., Gomory, R. E. (1967). A primal method for the assignment and transportation problems. Management Science, 10, 578–593.
Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D., (2010). Linear programming and network flows. (4th ed.). New York: Wiley-Interscience.
Bertsimas D., & Tsitsiklis, J. N., (1997). Introduction to linear programming. Belmont: Athena Scientific.
Deı̆neko, V. G., Klinz, B., & Woeginger, G. J., (2003). Which matrices are immune against the transportation paradox? Discrete Applied Mathematics 130, 495-501.
Doustdargholi, S., Derakhshan Asl, D., Abasgholipour, V. (2009). Sensitivity analysis of righthand-side parameter in transportation problem. Applied Mathematical Sciences, 3, 1501-1511.
Hadigheh, A. G., Terlaky, T. (2006). Sensitivity analysis in linear optimization: invariant support set intervals. European Journal of Operational Research, 169, 1158-1175.
Hadigheh, A. G., Mirnia, K., Terlaky, T. (2007). Active constraint set invariancy sensitivity analysis in linear optimization. Journal of Optimization Theory and Applications, 133, 303-315.
Higle, J. L. and Wallace, S. W. (2003) Analysis and uncertainty in linear programming, Iterfaces, 33 53-60.
Hiller, F. S., & Lieberman, G. J., (2010). Introduction to operations research. (9th ed.). New York: McGraw-Hill.
Hladik, M. (2010). Multiparametric linear programming: support set and optimal partition invariancy. European Journal of Operational Research, 202, 25-31.
Hladik, M. (2011). Tolerance analysis in linear systems and linear programming. Optimization Methods and Software, 26, 381-396.
Intrator, J., Engelberg, A. (1980). Sensitivity analysis as a means of reducing the dimensionality of a certain class of transportation problems. Naval Research Logistics, 27, 297-313.
Intrator, J., Paroush, J. (1977). Sensitivity analysis of the classical transportation problem: a combinatorial approach. Computer and Operations Research, 4, 213–226.
Jansen, B., de Jong, J. J., Roos, C. , Terlaky, T. (1997). Sensitivity analysis in linear programming: just be careful! European Journal of Operational Research, 101, 15-28.
Koltai, T., Terlaky, T. (2000). The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming. International Journal of Production Economics, 65, 257-274.
Leclerc, G. (1989). Post-optimal analysis of a degenerate optimal solution to the hitchcock formulation. Civil Engineering and Environmental Systems, 6, 92-101.
Lin, C. J., Wen, U. P. (2003). Sensitivity analysis of the optimal assignment problem. European Journal of Operational Research, 149, 35-46.
Lin, C. J., Wen, U. P. (2007). Sensitivity analysis of objective function coefficients of the assignment problem. Asia-Pacific Journal of Operational Research, 24, 203-221.
Lin, C. J., (2010). Computing shadow prices/costs of degenerate LP problems with reduced simplex tables. Expert Systems with Applications 37, 5848-5855.
Lin, C. J., (2011a). A labeling algorithm for the sensitivity ranges of the assignment problem. Applied Mathematical Modelling 35, 4852-4864.
Lin, C. J., (2011b). Determining type II sensitivity ranges of the fractional assignment problem. Operations Research Letters, 39, 67-73.
Lin, C. J., Wen, U. P., Lin, P. Y. (2011). Advanced sensitivity analysis of the fuzzy assignment problem. Applied Soft Computing, 11, 5341-5349.
Liu, S. T., (2003). The total cost bounds of the transportation problem with varying demand and supply. Omega 31, 247-251.
Schrenk, S., Finke, G., & Cung, V., (2011). Two classical transportation problems revisited: pure constant fixed charges and the paradox. Mathematical and Computer Modelling 54, 2306-2315.
Srinivasan, V., Thompson, G. L. (1972). An operator theory of parametric programming for the transportation problem-I and II. Naval Research Logistics Quarterly, 19, 205–252.
Stevenson, W. J., (2012). Operations Management. (11th ed.). New York: McGraw-Hill.
Thompson, G. L., (1997). Network models. In T. Gal, & H. J. Greenberg (ed.), Advances in sensitivity analysis and parametric programming (pp. 7-1- 7-34). Boston: Springer.
Ward, J. E., Wendell, R. E. (1990). Approaches to sensitivity analysis in linear programming. Annals of Operations Research, 27, 3-38.
Wu, N., Coppins, R. (1981). Linear programming and extensions. New York : McGraw-Hill.