研究生: |
趙君聖 Chao, Chun-Sheng |
---|---|
論文名稱: |
Polymer Nucleation via Segmental Bundling |
指導教授: |
蘇安仲
Su, An-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | 高分子結晶 、冷結晶 、成核 、束狀核 、奈米晶粒 、聚合 |
外文關鍵詞: | polymer crystallization, cold crystallization, nucleation, bundle, nanograin, coalescence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Many phenomena observed in nucleation and growth of polymer crystals from the melt state remained unexplained by classical theories in terms of chain length dependence and fractionation effects. Also unexplained are morphological features of nanometer-sized nodules in melt-crystallized polymer crystals. Here we develop a molecular theory in terms of nanograin nucleation as bundled segments; this may then serve as the basis to describe the growth and coalescence of polymer crystals during cold crystallization. In our model, each bundle is composed of a limited portion of segments which may not all belong to one polymer chain, forming tight and loose loops and ordered stems; this allows for quantitative analysis via standard statistical mechanics. The model predicts increased strains around each nanograin during growth and (even more strongly) upon coalescence, the size of nanograins is therefore predicted to be limited at a given temperature as experimentally observed. It also predicts an upper temperature above which the coalesced nanograins are no longer capable of further coalescence. Qualitatively, the strain field developed around a nanograin is expected to result in an effective exclusion zone (reminiscent of brushes around micelles) that explains the experimentally observed FCC-like arrangement of nanograins during polymer cold crystallization. With the main feature of the balance between crystallization and elastic forces duly considered, this single-chain model appears to serve well as a simplified basis for the description of polymer crystallization in terms of multi-chain nanograins as units of morphological development.
1.J. I. Lauritzen, Jr and J. D. Hoffman, J. Res. Nat. Bur. Stand, 1960, 64A, 73
2.J. D. Hoffman, L. J. Frolen, S. R. Gaylon and J. I. Lauritzen, Jr, J. Res. Nat. Bur. Stand, 1975, 79A, 671
3.J. D. Hoffman, Polymer, 1983, 24, 3
4.J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, Jr, Solid State Chemistry, 1975, vol.3, 497-604.
5.Unpublished TEM observation for sPS by C. H. Su & S. H. Chen
6.G. H. Michle, Kunststoff-Mikromechanik, 1992, P.187
7.C. H. Su, U. Jeng, S. H. Chen, S. J. Lin, Y. T. Ou, W.-T. Chuang and A. C. Su, Macromolecules, 2008, 41, 7630-7636
8.G. Allegra, J. Chem. Phys., 1977, 66, 5453
9.G. Allegra, Ferroelectrics, 1980, 30, 195
10.G. Allegra and S. V. Meille, Phys. Chem. Chem. Phys., 1999, 1, 5179-5188
11.G. Allegra and S. V. Meille, Adv. Polym. Sci., 2005, 191, 87-135
12.D. A. McQuarrie, Statistical Mechanics, 2nd, Harper & Row Publishers: New York, 1984, Ch. 1-4.
13.P. J. Flory, Principles of Polymer Chemistry, 6th, Cornell University Press: Ithaca New York, 1967, Ch. XI, 464-470
14.P. G. de Gennes, Scaling Concepts in Polymer Physics, 1st, Cornell University Press: Ithaca New York, 1979, Chapter VIII, 223-227
15.S. K. Ghosh, M. Hikosaka, A. Toda, S. Yamazaki and K.Yamada, Macromolecules, 2002, 35, 6985.
16.W. Hu, D. Frenkel and V. B. F. Mathot, Macromolecules, 2003, 36, 8178.
17.T. L. Cheng and A. C. Su, Polymer, 1995, 36, 73
18.T. L. Cheng and A. C. Su, Macromolecules, 1993, 26, 7161
19.U. W. Gedde, Polymer Physics, 1st, Chapman & Hall: London, 1995, Chapter 2, 19-20