簡易檢索 / 詳目顯示

研究生: 賴奕志
Lai, Yi-Chih
論文名稱: Studies of interacting two level atoms in cavity-Quantum ElectroDynamics arrays
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員: 賴暎杰
盧廷昌
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 35
中文關鍵詞: 量子相變二能階原子
外文關鍵詞: Quantum phase transition, two-level atom
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nowadays the light-matter interaction phenomena in spatially periodic structure have been studied extensive, i.e. photonic crystals, cavity array. In this thesis, we consider coherent properties of coupled atom-field systems with adding the interaction between atoms and discuss the quantum phase transition and envelope function method for this system. We further show that beyond widely used low excitation density limit and Holstein-Primakoff transformation. We have shown that the phase transition diagram of the normal to superfluid (BEC) state of low branch polaritons in the critical temperature domain. Finally, a multiple-scale technique has been used to analyze the electromagnetic properties of the nonlinear dielectric periodic thin-film stacks. We have found a solitary–wave equation behavior in the array which includes the atom-atom interaction.


    Abstract………………………………………………………… 1. Introduction……………………………………………………1 1.1 Motivation…………………………………………1 1.2 Organization…………………………………………2 2. The model for interacting two level atoms in cavity-QED arrays…………………………………………………………………3 2.1 The Hamiltonian describes the model……………3 2.2 The dispersion relation for polariton basis…8 2.3 The nonlinear term for polariton basis………12 3. The polaritons behavior in the temperature domain……14 3.1 The partition function……………………………14 3.2 The critical temperature for polaritons……………18 4. Envelope function approach in the continuous limit……21 4.1 The equation of motion for two-species boson…21 4.2 The multiple scales technique………………………………26 5. The conclusions…………………………………………………28 Appendix A……………………………………………………………29 Reference………………………………………………………………31

    [1]C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Photons and atoms (Wiley-VCH, Weinheim,2004).
    [2]Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wile Interscience, 1999).
    [3]Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973).
    [4]K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973).
    [5]F. T. Hioe, Phys. Rev. A 8, 1440 (1973).
    [6]M. J. Hartmann, F. Brandao and M. B. Plenio, Nature Phys. 2, 849 (2006).
    [7]A. D. Greentree, C. Tahan, J. H. Cole , L. C. L. Hollenberg, Nature Phys. 2, 856 (2006).
    [8]J. Kasprzak et al, Nature Phys. 443, 409 (2006)
    [9]A. P. Alodjants, I. O. Barinov, S. M. Arakelian, J. Phys. B 43, 095502 (2010).
    [10]I. O. Barinov, A. P. Alodjants, S. M. Arakelian, Quantum Electronics 39, 685 (2009).
    [11]R. M. Rodriguze-Lara and Ray-Kuang Lee, arXiv:1102.3747, URL http://arxiv.org/abs/1102.3747.
    [12]R. M. Rodriguze-Lara and Ray-Kuang Lee, arXiv:1008.2572, URL http://arxiv.org/abs/1008.2572.
    [13]M. Kramer, C. Menotti, L. Pitaevskii, S. Stringari, Eur. Phys. J.D, 27, 247 (2003).
    [14]M. Paternostro, G. S. Agarwal and M. S. Kim, New J. Phys. 11, 013059 (2009).
    [15]T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
    [16]R. Glauber, Phys. Rec. 131, 2766 (1963).
    [17]C. M. de Sterke and J. E. Sipe, Phys. Rev. A 38, 5149 (1988).
    [18]S. P. Novikov, S. V. Manakov, L. B. Pitaevskii and V. E. Zakharov , Theory of Solitons (New York: Plenum,1984)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE