簡易檢索 / 詳目顯示

研究生: 許智凱
Chih-Kai Hsu
論文名稱: 錫覆蓋層/Air-gap 銅導線鑲嵌結構電遷移研究
Electromigration Study on Sn capped Air-gap Cu Damascenes Structure
指導教授: 葉鳳生
Fon-Shan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 電遷移可靠度air-gap 銅導線鑲嵌結構犧牲層浸鍍錫
外文關鍵詞: electromigration, reliability, air-gap Cu damascene structures, sacrificial layer, immersion Sn plating
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本論文之目的在於製作Sn cap及SiNx cap/Cu/Ta/SiO2 air-gap damascene structure及討探電遷移機制,其中包括電鍍銅、擴散阻障層Ta、犧牲層HSQ以及Sn鍍製的製程整合。
    在Sn cap方面,以Immersion plating技術能夠選擇性的沈積錫於銅膜上,進一步以Auger、GIAXRD了解 Sn薄膜成份,以AFM量測Sn薄膜表面平整度。
    在犧牲層(sacrificial layer)方面,以旋轉塗佈的方式將HSQ(hydrogen silsesquioxane,precursor : Fox15)和MIBK比例為2:1塗佈在晶圓上,來得到所需的膜厚,在預烤3500C 3分鐘後將cage-network-like HSQ浸泡在BOE溶液內可由SiO2與其界面間快速被去除,為一個良好的犧牲層。
    在化學機械研磨(CMP)方面,銅平行導線其width/space為0.6/0.6μm以Al2O3顆粒0.05μm、HNO3、Citric Acid的銅研磨液分別以不同正/背壓(D.F/B.P)= 5.0/4.0、4.0/3.0、3.0/2.0 psi來移除銅,之後以Silica Levasil 50CK 、H2O2 及 H2O配合D.F/B.P =3.0/2.0來移除Ta,並以SEM觀察研磨結果,找出其最佳研磨條件。
    將犧牲層HSQ、擴散阻障層Ta和有電極電鍍銅配合化學機械研磨及immersion plating的技術完成SiNx cap及Sn cap air-gap Cu damascene平行導線結構,在電遷移量測方面,將SiNx cap及Sn cap air-gap 銅導線樣品置於溫度為1750C、定電流密度為4*106 A/cm2、壓力為2mtorr下進行電遷移量測,發現Sn cap air-gap銅導線的lifetime比SiNx cap air-gap銅導線的lifetime長了約4.5倍左右。為了了解Sn cap air-gap 銅導線電遷移發生時之活化能,因此將其置入不同的溫度分別為1500C、1750C、2000C量測電遷移,找出Sn cap air-gap銅導線電遷移發生之活化能為(activation energy Ea) 1.07 ev。


    Abstract

    The fabrication of Sn cap and SiNx cap Cu/Ta/SiO2 air-gap damascenes structures which includes the integration of electroplating copper, diffusion barrier Ta, sacrificial layer HSQ and capping layer Sn is the main goal in this thesis. The electromigration on this single damascene structure is also investigated.
    We developed the selective immersion plating Sn on copper, use Auger、GIAXRD to examine the composition of Sn thin film, and use AFM to measure the surface Morphology of Sn film. We mixed HSQ with MIBK at ratio=2:1 and spun it on SiO2 substrate. The HSQ film with pre-bake temperature 350℃ 3min is a good sacrificial layer. The cage-network-like HSQ can be removed by BOE solution easily from the interface with SiO2.
    Cu interconnect lines with width/space = 0.6/0.6μm deposited on Ta barrier layer are under chemical-mechical polished by using Al2O3 0.05μm particle with mixture HNO3 and Citric Acid , down force/back pressure varying 5.0/4.0、4.0/3.0、3.0/2.0 psi to remove Cu and by using Silica Levasil 50CK with H2O2 and H2O, D.F/B.P =3.0/2.0 to remove Ta. From the SEM pictures, We determine the best CMP conditions.
    Final, the Sn cap and SiNx cap Cu air-gap damascene structures with diffusion barrier Ta , sacrificial layer HSQ and capping layer Sn were fabricated. Sn cap and SiNx cap samples were studied by electromigration tests at 1750C with a current density of 4*106A/cm2, at pressure of 2 mtorr. The electromigration lifetimes for Sn cap air gap Cu interconnect lines were found to be longer than that of SiNx cap air gap Cu interconnect lines about 4.5 X. In order to determine the activation energy of electromigration, we measured the I-V under current stress at varying temperature with 1500C、1750C、2000C. The activation energy for Sn cap air-gap Cu interconnect lines is found to be 1.07eV.

    目錄 第一章 緒論.............................................1 第二章 犧牲層HSQ性質、Immersion plating、化學機械研磨...5 2-1犧牲層(sacrificial layer)HSQ性質..................5 2-2 Immersion plating..............................6 2-3 化學機械研磨...................................7 第三章 電遷移(EM)可靠度...............................10 3-1電遷移(electromigration).........................10 3-2 原子在電遷移中的擴散..............................10 3-2電遷移的活化能...................................15 第四章 量測儀器與原理.................................17 4-1 四點探針......................................17 4-2 α-step.........................................18 4-3 電流-電壓 (I –V) 曲線量測及分析..............19 4-4 歐傑電子能譜.................................19 4-5 掃描式電子顯微鏡(SEM)........................21 4-6 原子力顯微鏡(AFM)............................22 4-7 X光粉末繞射分析(XRD)........................23 4-8 可靠度量測系統(Reliability system).............26 第五章 實驗.........................................30 5-1 Metal cap Sn樣品之準備 .....................30 5-1-1浸鍍錫的最佳條件樣品製做...................31 5-1-2浸鍍錫(immersion Sn plating )沈積速率......32 5-1-3 Sn膜薄材料分析...........................32 5-2 化學機械研磨(CMP)...........................32 5-2-1 Ta薄膜研磨速率樣品之製作...................32 5-2-2a Cu薄膜研磨之最佳條件.....................34 5-2-2b Cu研磨速率...............................35 5-3 犧牲層HSQ....................................35 5-3-1 HSQ膜厚樣品之製作..........................35 5-4 SiNx cap及Sn cap Air-gap銅導線.................36 5-4-1 SiNx cap 及 Sn cap Air gap 銅導線樣品製作....36 5-5電遷移可靠度量測................................38 5-5-1 SiNx cap and Sn cap/Cu air-gap damascenes電遷移可靠度量測..............................................38 5-5-2 Anneal 對Sn/Cu air-gap導線結構阻值的影響.........38 第六章 實驗及量測結果.................................49 6-1 Metal cap Sn ...................................49 6-1-1 Immersion Solution 最佳條件..................49 6-1-2 浸鍍錫沈積速率.............................50 6-1-3 Sn薄膜材料分析.............................50 6-2 化學機械研磨..................................51 6-2-1擴散阻障層Ta之研磨速率(R.R)..................51 6-2-2 Cu之研磨速率(R.R)...........................52 6-3 犧牲層HSQ.......................................53 6-3-1犧牲層HSQ膜厚................................53 6-4 Air Gap 銅導線結構鑲嵌結構.....................53 6-5 SiNx cap and Sn cap Air Gap 銅導線電遷移......54 6-5-1 SiNx cap及Sn cap R-t量測結果..............54 6-5-2 Auger電子質譜儀分析........................57 6-5-3低略角X光粉末繞射儀(GIAXRD)................58 6-5-4 Anneal 對Sn cap/Cu/Ta air-gap阻值影響.....58 6-5-5 Group N及Group Sn電遷移量測後SEM圖........58 6-6 電遷移機制...................................59 6-6-1電遷移發生時之活化能......................59 6-6-2 電遷移造成導線失效機制...................60 6-6-3 電性與failure SEM綜合比較...............61 第七章 結論......................................102 參考文獻..........................................104

    參考文獻

    [1] Peter Singer, Semiconductor International, p.91.June 1998
    [2] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, Journal of Applied Physics, vol. 93(11), p.8793-8841, 2003
    [3] C. Lin, L. Clevenger, F. Schnabel, F. F. Jamin, and D. Dobuzinski, “Planarization of dual-damascene post-metal-CMP structures”, IITC, p.99-86, 1999
    [4] C. Y. Chang, S. M. Sze, “ULSI Technology”, McGraw-Hill, Chap. 8, 1996
    [5] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical Mechanical Planization of Microelectronic materials”, John Wiley & Sons, Chap. 1, 1997
    [6] Khin Maung Latt , Liu Rong , W.G.Zhu, Y.K.Lee, J.Materials Sci. ,37,1941-1949(2002)
    [7] W.H.Teh, Electronics Letters, 36(25),2105-2106(2000)
    [8] 黃士展,清華大學碩士論文(2001)
    [9] 陳忠賢, “銅/鉭基擴散障礙層與低介電係數材料之製程整合,國立清華大學博士論文, 2003
    [10] L.G. Gosset, V. Arnal, C. Prindle, R. Hoofman, G. Verheijden, R. Daamen, L. Broussous, F. Fusalba, M. Assous, R. Chatterjee, J. Torres, D. Gravesteijn, and K.C. Yu, “General review of issues and perspectives for advanced copper interconnections using air gap as ultra-low K material” .
    [11] Junji Noguchi, Kiyohiko Sato, Nobuhiro Konishi, Syouichi Uno, Takayuki Oshima, Kensuke Ishikawa, Hiroshi Ashihara, Tatsuyuki Saito, Maki Kubo, Tsuyoshi Tamaru, Youhei Yamada, Hideo Aoki, and Tsuyoshi Fujiwara, “Process and Reliability of Air-Gap Cu Interconnect Using 90-nm Node Technology”, IEEE Transactions on Electron Devices, vol. 52, p.352-359 , 2005
    [12] PaulA.Kohl, Member, IEEE, Dhananjay M. Bhusari, Michael Wedlake, Carlye Case, Fred P. Klemens, John Miner, Byung-ChanLee,RonaldJ.Gutmann, Member, IEEE, and Robert Shick
    IEEE ELECTRONDEVICE LETTERS, vol.21,NO.12,December 2000
    [13] C.-K. Hu, R. Rosenberg, H. S. Rathore, D. B. Nguyen, and B.Agarwala, Proceeding of IEEE International Interconnect Technology Conference (IEEE, Piscataway, NJ, 1999),P267.
    [14] C.S. Hau-Riege and C.V. Thompson, Appl. Phys. Lett.78,3451 (2001)
    [15] A.Von Glasow, A.H. Fischer, and S. Penka,2001 Advance Metallization Conference(M.R.S,Warrendale, PA,2001),p.433
    [16] C.K.Hu et al., Thin Solid Films, Vol. 262, p.84~92, 1995
    [17] Connie P. Wang, Sergey Lopatin, A.P.L vol.83,Number 5
    [18] C.K. Hu , L.M Gignac, Microelectronic Engineering 70 (2003) 406–411
    [19] S.T Chen, S Kaldor ,App .phy.Letters Vol.83,Number 5
    [20] Tatsuyuki Saito, Member ,IEEE TRANSACTIONSON ELECTRON DEVICES ,VOL.51,NO.12,DECEMBER2004
    [21] Michael Lane and Robert Rosenberg, Mat. Res. Soc. Symp. Proc. Vol.766 2003
    [22] C.C. Yang, C. Chen, and J. Mater. Chem., “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing”, vol. 12, p.1138-1141, 2002
    [23] 曾威鈞,Air-gap銅導線製程整合和漏電流傳導機制,清華大學碩士論文(2005).
    [24] L.M. Cook, “Chemical Process in glass polishing,” Journal of Non-Crystalline Solids,120,pp.152-171,1990.
    [25] S. P. Murarka, S. W. Hymes, “Copper Metallization for ULSI and Beyond,” Critical Reviews in Solid State and material Sciences,87(1995)
    [26] J.P. Elliot, M. Fallon, A. J. Waton, J. T. M. Stevenson, A.O’Hara, “A Test Structure for the Measurement of Planarization,” IEEE International Conf. on Micoelectronic Test Structure, Vol.9,March 1996.
    [27] J.H. Rose, Appl. Phys. Lett, Vol 61,(1992),pp.2170-2172
    [28] I.A Blech and C. Herring, Appl. Phys. Lett, Vol ,29(1976),pp.131
    [29] J.R. Black, IEEE Trans. On Electron Device, ED-16,(19690,pp.348
    [30] J.R. Lioyed, R.H. Koch, Appl. Phys. Lett, Vol.52,(1988),pp.194-196
    [31] Norman G. Einspruch, VLSI Electronics Microstructure Science, Vol 15,Academic, New York,1987,Chapter8.
    [32] H.U. Schreiber, Solid-State Electronics, Vol 24,(1981), pp.583.
    [33] P.B. Ghate, Solid State Technology, Vol 26(3),(1983),pp.118.
    [34] Hu C-K, Rosenberg R, Klaasen W, Stamper AK. In: Adv. Metal. Conf, 1999.
    [35] C.-K. Hu, L. Gignac, E. Liniger, B. Herbst, and D.L. Rath, Appl. Phys. Lett. Vol. 83,Num.5.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE