研究生: |
阮國段 Nguyen, Quoc Thang |
---|---|
論文名稱: |
利用單原子及缺陷進行表面修飾以提升光催化活性及其機制探討 Surface Engineering with Single Atoms and Defects Toward Enhanced Photocatalytic Activity and Mechanistic Insights |
指導教授: |
陳貴賢
Chen, Kuei-Hsien 林麗瓊 Chen, Li-Chyong 李志浩 Lee, Chih-Hao |
口試委員: |
吳恆良
Wu, Heng-Liang 吳紀聖 Wu, Chi-Sheng 方牧懷 Fang, Mu-Huai |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 121 |
中文關鍵詞: | 單原子 、空缺 、Bi2WO6 、NO去除 、CO2還原 |
外文關鍵詞: | single atoms, vacancies, Bi2WO6, NO removal, CO2 reduction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單原子支撐的金屬氧化物正成為解決環境挑戰和永續能源生產的解決方案。在這項研究中,我們合成了過渡金屬單原子(Fe和Ni)與氧空缺共同修飾的Bi2WO6光催化劑,並展示了其在光催化CO2還原和NO去除方面的潛力。Fe修飾的Bi2WO6在將CO2轉化為CO方面展現了卓越的還原效率,其還原效率高達36.78 μmol∙g−1,並且具有出色的NO去除性能,其中NO2轉化率僅為0.37%。Fe單原子與氧空缺的共存,在穩定NO2中間體方面發揮了重要作用,促使其進一步轉化為NO3‒。與此同時,Bi2WO6表面Ni單原子和氧空缺的最佳比例降低了關鍵的COOH中間體形成和脫水反應的能障,實現了創紀錄的CO產生效率53.49 µmol∙g‒1,超越了其他Bi2WO6類光催化劑在氣相CO2光還原中的表現。通過臨場X射線吸收光譜、臨場紅外漫反射光譜 (in-situ DRIFTS) 和電子順磁共振自旋捕獲技術,我們對於機制有更深層的了解,揭示了單原子活性位點和氧空缺在穩定中間體和促進關鍵反應步驟中的關鍵作用。本研究突顯了單原子與表面氧空缺在調節光催化途徑中的協同作用,為永續能源以及環境修復技術的進步開啟了新的篇章。
Single-atom-supported metal oxides are emerging as a promising solution for addressing environmental challenges and sustainable energy production. In this study, we report the synthesis of transition metal single atoms (Fe and Ni) and oxygen vacancies co-modified Bi2WO6 photocatalysts, demonstrating their potential in photocatalytic CO2 reduction and NO removal. The Fe-modified Bi2WO6 achieves an impressive CO2-to-CO reduction efficiency of 36.78 μmol∙g−1 and outstanding NO removal performance with a remarkably low NO2 conversion of just 0.37%. The co-presence of Fe single atoms and induced oxygen vacancies plays an important role in stabilizing the NO2 intermediate for its further conversion into NO3‒. Meanwhile, an optimal ratio of Ni single atoms and oxygen vacancies on Bi2WO6’s surface reduces the energy barrier for the formation and dehydration of a key COOH intermediate, achieving a record-high CO production efficiency of 53.49 µmol∙g‒1, surpassing other Bi2WO6-based catalysts for gas-phase CO2 photoreduction. Mechanistic insights are provided through in-situ X-ray absorption spectroscopy, in-situ diffuse reflectance infrared Fourier transform spectroscopy, and electron paramagnetic resonance spin trapping tests revealing the pivotal role of single-atom active sites and oxygen vacancies in stabilizing intermediates and facilitating key reaction steps. This work highlights the synergy between single atoms and surface oxygen vacancies in tuning photocatalytic pathways, paving the way for advancements in sustainable energy and environmental remediation technologies.
References
[1] G.A. Olah, G.K. Prakash, A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future, Journal of the American Chemical Society 133 (2011) 12881-12898.
[2] G.T. Pecl, M.B. Araujo, J.D. Bell, J. Blanchard, T.C. Bonebrake, I.C. Chen, T.D. Clark, R.K. Colwell, F. Danielsen, B. Evengard, L. Falconi, S. Ferrier, S. Frusher, R.A. Garcia, R.B. Griffis, A.J. Hobday, C. Janion-Scheepers, M.A. Jarzyna, S. Jennings, J. Lenoir, H.I. Linnetved, V.Y. Martin, P.C. McCormack, J. McDonald, N.J. Mitchell, T. Mustonen, J.M. Pandolfi, N. Pettorelli, E. Popova, S.A. Robinson, B.R. Scheffers, J.D. Shaw, C.J. Sorte, J.M. Strugnell, J.M. Sunday, M.N. Tuanmu, A. Verges, C. Villanueva, T. Wernberg, E. Wapstra, S.E. Williams, Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being, Science 355 (2017) eaai9214.
[3] Atmospheric CO2 amount measured at the Mauna Loa Observatory,
[4] R.A. Simmer, E.J. Jansen, K.J. Patterson, J.L. Schnoor, Climate Change and the Sea: A Major Disruption in Steady State and the Master Variables, ACS Environmental Au 3 (2023) 195-208.
[5] Satellite sea level observations, NASA's Goddard Space Flight Center.,
[6] J. Koornneef, A. Ramírez, W. Turkenburg, A. Faaij, The environmental impact and risk assessment of CO2 capture, transport and storage – An evaluation of the knowledge base, Progress in Energy and Combustion Science 38 (2012) 62-86.
[7] A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction, Nature Catalysis 3 (2020) 775-786.
[8] W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects, Advanced Materials 26 (2014) 4607-4626.
[9] J. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities, Advanced Materials 30 (2018) 1704649.
[10] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277 (1979) 637-638.
[11] X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels, Chemical Reviews 119 (2019) 3962-4179.
[12] Y. Bo, C. Gao, Y. Xiong, Recent advances in engineering active sites for photocatalytic CO2 reduction, Nanoscale 12 (2020) 12196-12209.
[13] I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy, A. Ganguly, C.H. Wang, J.K. Chang, C.I. Wu, L.C. Chen, K.H. Chen, Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide, Nano Letters 14 (2014) 6097-6103.
[14] F.-Y. Fu, C.-C. Fan, M. Qorbani, C.-Y. Huang, P.-C. Kuo, J.-S. Hwang, G.-J. Shu, S.-M. Chang, H.-L. Wu, C.-I. Wu, K.-H. Chen, L.-C. Chen, Selective CO2-to-CO photoreduction over an orthophosphate semiconductor via the direct Z-scheme heterojunction of Ag3PO4 quantum dots decorated on SnS2 nanosheets, Sustainable Energy & Fuels 6 (2022) 4418-4428.
[15] A. Sabbah, I. Shown, M. Qorbani, F.-Y. Fu, T.-Y. Lin, H.-L. Wu, P.-W. Chung, C.-I. Wu, S.R.M. Santiago, J.-L. Shen, K.-H. Chen, L.-C. Chen, Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon, Nano Energy 93 (2022) 106809.
[16] L. Liu, J. Hu, Y. Sheng, H. Akhoundzadeh, W. Tu, W.J.S. Siow, J.H. Ong, H. Huang, R. Xu, Ru Single Atom Dispersed Cu Nanoparticle with Dual Sites Enables Outstanding Photocatalytic CO2 Reduction, ACS Nano 18 (2024) 26271–26280.
[17] T.T. Mamo, M. Qorbani, A.G. Hailemariam, R. Putikam, C.-M. Chu, T.-R. Ko, A. Sabbah, C.-Y. Huang, S. Kholimatussadiah, T. Billo, M.K. Hussien, S.-Y. Chang, M.-C. Lin, W.-Y. Woon, H.-L. Wu, K.-T. Wong, L.-C. Chen, K.-H. Chen, Enhanced CO2 photoreduction to CH4 via *COOH and *CHO intermediates stabilization by synergistic effect of implanted P and S vacancy in thin-film SnS2, Nano Energy 128 (2024) 109863.
[18] M. Kamal Hussien, A. Sabbah, M. Qorbani, M. Hammad Elsayed, P. Raghunath, T.-Y. Lin, S. Quadir, H.-Y. Wang, H.-L. Wu, D.-L.M. Tzou, M.-C. Lin, P.-W. Chung, H.-H. Chou, L.-C. Chen, K.-H. Chen, Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution, Chemical Engineering Journal 430 (2022) 132853.
[19] M.K. Hussien, A. Sabbah, M. Qorbani, M.H. Elsayed, S. Quadir, P. Raghunath, D.-L.M. Tzou, S.-C. Haw, H.-H. Chou, N.Q. Thang, M.C. Lin, L.-C. Chen, K.-H. Chen, Numerous defects induced by exfoliation of boron-doped g-C3N4 towards active sites modulation for highly efficient solar-to-fuel conversion, Materials Today Sustainability 22 (2023) 100359.
[20] L. Liu, S. Wang, H. Huang, Y. Zhang, T. Ma, Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction, Nano Energy 75 (2020) 104959.
[21] Ž. Kovačič, B. Likozar, M. Huš, Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations, ACS Catalysis 10 (2020) 14984-15007.
[22] X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy & Environmental Science 9 (2016) 2177-2196.
[23] Y. He, L. Yin, N. Yuan, G. Zhang, Adsorption and activation, active site and reaction pathway of photocatalytic CO2 reduction: A review, Chemical Engineering Journal 481 (2024) 148754.
[24] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx, Nat Chem 3 (2011) 634.
[25] L. Cheng, H. Yin, C. Cai, J. Fan, Q. Xiang, Single Ni Atoms Anchored on Porous Few-Layer g-C3N4 for Photocatalytic CO2 Reduction: The Role of Edge Confinement, Small 16 (2020) e2002411.
[26] X.Y. Dong, Y.N. Si, Q.Y. Wang, S. Wang, S.Q. Zang, Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO2 Reduction, Advanced Materials 33 (2021) e2101568.
[27] G. Wang, Y. Wu, Z. Li, Z. Lou, Q. Chen, Y. Li, D. Wang, J. Mao, Engineering a Copper Single-Atom Electron Bridge to Achieve Efficient Photocatalytic CO2 Conversion, Angewandte Chemie International Edition in English 62 (2023) e202218460.
[28] H. Yin, F. Dong, D. Wang, J. Li, Coupling Cu Single Atoms and Phase Junction for Photocatalytic CO2 Reduction with 100% CO Selectivity, ACS Catalysis 12 (2022) 14096-14105.
[29] M. Ma, Z. Huang, D.E. Doronkin, W. Fa, Z. Rao, Y. Zou, R. Wang, Y. Zhong, Y. Cao, R. Zhang, Y. Zhou, Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol, Applied Catalysis B: Environmental 300 (2022) 120695.
[30] J. Di, C. Chen, S.Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y.X. Weng, J. Xia, L. Song, S. Li, H. Li, Z. Liu, Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction, Nature Communications 10 (2019) 2840.
[31] S.S. Wang, H.H. Huang, M. Liu, S. Yao, S. Guo, J.W. Wang, Z.M. Zhang, T.B. Lu, Encapsulation of Single Iron Sites in a Metal-Porphyrin Framework for High-Performance Photocatalytic CO2 Reduction, Inorganic Chemistry 59 (2020) 6301-6307.
[32] S. Hu, P. Qiao, X. Yi, Y. Lei, H. Hu, J. Ye, D. Wang, Selective Photocatalytic Reduction of CO2 to CO Mediated by Silver Single Atoms Anchored on Tubular Carbon Nitride, Angewandte Chemie 135 (2023) e202304585.
[33] H. Li, Q. Song, S. Wan, C.W. Tung, C. Liu, Y. Pan, G. Luo, H.M. Chen, S. Cao, J. Yu, L. Zhang, Atomic Interface Engineering of Single-Atom Pt/TiO2-Ti3C2 for Boosting Photocatalytic CO2 Reduction, Small 19 (2023) e2301711.
[34] Y. Cao, L. Guo, M. Dan, D.E. Doronkin, C. Han, Z. Rao, Y. Liu, J. Meng, Z. Huang, K. Zheng, P. Chen, F. Dong, Y. Zhou, Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction, Nature Communications 12 (2021) 1675.
[35] L. Liu, M. Li, F. Chen, H. Huang, Recent Advances on Single‐Atom Catalysts for CO2 Reduction, Small Structures 4 (2022) 2200188.
[36] B. Li, C. Guo, X. Wang, W. Dong, B. Xu, X. Xing, D. Zhou, X. Xue, Q. Luan, W. Tang, C. Hou, Strong interaction of single-atom Pt with Cd0.5Zn0.5S: electronic structure regulation and photocatalytic hydrogen evolution promotion, Materials Today Nano 21 (2023) 100281.
[37] G. Ren, M. Shi, S. Liu, Z. Li, Z. Zhang, X. Meng, Molecular-level insight into photocatalytic reduction of N2 over Ruthenium single atom modified TiO2 by electronic Metal-support interaction, Chemical Engineering Journal 454 (2023) 140158.
[38] Y. Shi, C. Zhao, H. Wei, J. Guo, S. Liang, A. Wang, T. Zhang, J. Liu, T. Ma, Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization, Advanced Materials 26 (2014) 8147-8153.
[39] C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications, Chemical Reviews 120 (2020) 12175-12216.
[40] L. Liang, F. Lei, S. Gao, Y. Sun, X. Jiao, J. Wu, S. Qamar, Y. Xie, Single Unit Cell Bismuth Tungstate Layers Realizing Robust Solar CO2 Reduction to Methanol, Angewandte Chemie International Edition in English 54 (2015) 13971-13974.
[41] T. Hu, H. Li, N. Du, W. Hou, Iron‐Doped Bismuth Tungstate with an Excellent Photocatalytic Performance, ChemCatChem 10 (2018) 3040-3048.
[42] Y. Qiu, J. Lu, Y. Yan, J. Niu, Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst, Journal of Hazardous materials 422 (2022) 126920.
[43] L. Liu, J. Liu, K. Sun, J. Wan, F. Fu, J. Fan, Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance, Chemical Engineering Journal 411 (2021) 128629.
[44] Z. Wang, J. Fan, B. Cheng, J. Yu, J. Xu, Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction, Materials Today Physics 15 (2020) 100279.
[45] X. Jin, Y. Xu, X. Zhou, C. Lv, Q. Huang, G. Chen, H. Xie, T. Ge, J. Cao, J. Zhan, L. Ye, Single-Atom Fe Triggers Superb CO2 Photoreduction on a Bismuth-Rich Catalyst, ACS Materials Letters 3 (2021) 364-371.
[46] N. Kim, R.-N. Vannier, C.P. Grey, Detecting Different Oxygen-Ion Jump Pathways in Bi2WO6 with 1- and 2-Dimensional 17O MAS NMR Spectroscopy, Chemistry of Materials 17 (2005) 1952-1958.
[47] X. Xiong, C. Mao, Z. Yang, Q. Zhang, G.I.N. Waterhouse, L. Gu, T. Zhang, Photocatalytic CO2 Reduction to CO over Ni Single Atoms Supported on Defect‐Rich Zirconia, Advanced Energy Materials 10 (2020) 2002928.
[48] L. Li, J. Yang, L. Yang, F. Fu, H. Xu, X. Fan, Photocatalytic performance of TiO2/Bi2WO6 photocatalysts with trace Fe3+ dopant for gaseous toluene decomposition, Journal of Environmental Chemical Engineering 10 (2022) 107708.
[49] M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du, L. Wang, Molten‐Salt‐Mediated Synthesis of an Atomic Nickel Co‐catalyst on TiO2 for Improved Photocatalytic H2 Evolution, Angewandte Chemie 132 (2020) 7297-7301.
[50] Z. Wang, R. Lin, Y. Huo, H. Li, L. Wang, Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion, Advanced Functional Materials 32 (2021) 2109503.
[51] W. Dai, S. Zhang, H. Shang, S. Xiao, Z. Tian, W. Fan, X. Chen, S. Wang, W. Chen, D. Zhang, Breaking the Selectivity Barrier: Reactive Oxygen Species Control in Photocatalytic Nitric Oxide Conversion, Advanced Functional Materials 34 (2023) 2309426.
[52] C. Wu, Q. Tang, S. Zhang, K. Lv, X. Fuku, J. Wang, Surface Modification of TiO2 by Hyper-Cross-Linked Polymers for Efficient Visible-Light-Driven Photocatalytic NO Oxidation, ACS Applied Materials & Interfaces 15 (2023) 30127-30138.
[53] N.Q. Thang, A. Sabbah, L.-C. Chen, K.-H. Chen, L.V. Hai, C.M. Thi, P.V. Viet, Localized surface plasmonic resonance role of silver nanoparticles in the enhancement of long-chain hydrocarbons of the CO2 reduction over Ag-gC3N4/ZnO nanorods photocatalysts, Chemical Engineering Science 229 (2021) 116049.
[54] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B Condensed Matter 54 (1996) 11169-11186.
[55] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6 (1996) 15-50.
[56] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B Condensed Matter 46 (1992) 6671-6687.
[57] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865-3868.
[58] M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, The Journal of Chemical Physics 110 (1999) 5029-5036.
[59] B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Physical Review B 59 (1999) 7413-7421.
[60] N.A. McDowell, K.S. Knight, P. Lightfoot, Unusual high-temperature structural behaviour in ferroelectric Bi2WO6, Chemistry 12 (2006) 1493-1499.
[61] J.G. Thompson, A.D. Rae, R.L. Withers, D.C. Craig, Revised structure of Bi3TiNbO9, Acta Crystallographica Section B Structural Science 47 (1991) 174-180.
[62] H. Djani, P. Hermet, P. Ghosez, First-Principles Characterization of the P21ab Ferroelectric Phase of Aurivillius Bi2WO6, The Journal of Physical Chemistry C 118 (2014) 13514-13524.
[63] V. Koteski, J. Belošević-Čavor, V. Ivanovski, A. Umićević, D. Toprek, Abinitio calculations of the optical and electronic properties of Bi2WO6 doped with Mo, Cr, Fe, and Zn on the W–lattice site, Applied Surface Science 515 (2020) 146036.
[64] Y. Wei, X. Wei, S. Guo, Y. Huang, G. Zhu, J. Zhang, The effects of Br dopant on the photo-catalytic properties of Bi2WO6, Materials Science and Engineering: B 206 (2016) 79-84.
[65] B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems, International Journal of Quantum Chemistry 114 (2014) 14-49.
[66] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal of Physical Chemistry B 108 (2004) 17886-17892.
[67] W.M. Haynes, CRC handbook of chemistry and physics, CRC Press (2016) 2670.
[68] J. Ma, H. He, F. Liu, Effect of Fe on the photocatalytic removal of NO over visible light responsive Fe/TiO2 catalysts, Applied Catalysis B: Environmental 179 (2015) 21-28.
[69] Q. Li, X. Zhu, J. Yang, Q. Yu, X. Zhu, J. Chu, Y. Du, C. Wang, Y. Hua, H. Li, H. Xu, Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction, Inorganic Chemistry Frontiers 7 (2020) 597-602.
[70] Y. Liu, D. Shen, Q. Zhang, Y. Lin, F. Peng, Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface, Applied Catalysis B: Environmental 283 (2021) 119630.
[71] Y. Jiang, H.Y. Chen, J.Y. Li, J.F. Liao, H.H. Zhang, X.D. Wang, D.B. Kuang, Z‐Scheme 2D/2D Heterojunction of CsPbBr3/Bi2WO6 for Improved Photocatalytic CO2 Reduction, Advanced Functional Materials 30 (2020) 2004293.
[72] H. Ma, W. Yang, S. Gao, W. Geng, Y. Lu, C. Zhou, J.K. Shang, T. Shi, Q. Li, Superior photopiezocatalytic performance by enhancing spontaneous polarization through post-synthesis structure distortion in ultrathin Bi2WO6 nanosheet polar photocatalyst, Chemical Engineering Journal 455 (2023) 140471.
[73] Y. Xiong, H. Li, C. Liu, L. Zheng, C. Liu, J.O. Wang, S. Liu, Y. Han, L. Gu, J. Qian, D. Wang, Single-Atom Fe Catalysts for Fenton-Like Reactions: Roles of Different N Species, Advanced Materials 34 (2022) e2110653.
[74] G. Zhao, W. Li, H. Zhang, W. Wang, Y. Ren, Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation, Chemical Engineering Journal 430 (2022) 132937.
[75] S. Xiong, S. Bao, W. Wang, J. Hao, Y. Mao, P. Liu, Y. Huang, Z. Duan, Y. Lv, D. Ouyang, Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2, Applied Catalysis B: Environmental 305 (2022) 121026.
[76] J. Fan, Y. Zhao, H. Du, L. Zheng, M. Gao, D. Li, J. Feng, Light-Induced Structural Dynamic Evolution of Pt Single Atoms for Highly Efficient Photocatalytic CO2 Reduction, ACS Applied Materials & Interfaces 14 (2022) 26752–26765.
[77] S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, S. Liang, R. Yu, Y. Wang, D. Wang, Y. Li, Rare-Earth Single Erbium Atoms for Enhanced Photocatalytic CO2 Reduction, Angewandte Chemie International Edition in English 59 (2020) 10651-10657.
[78] M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, J. Ma, Y. Liu, Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework, Nature Communications 14 (2023) 2473.
[79] H. Huang, X. Liu, F. Li, Q. He, H. Ji, C. Yu, In situ construction of a 2D CoTiO3/g-C3N4 photocatalyst with an S-scheme heterojunction and its excellent performance for CO2 reduction, Sustainable Energy & Fuels 6 (2022) 4903-4915.
[80] M. Wang, M. Shen, X. Jin, J. Tian, Y. Zhou, Y. Shao, L. Zhang, Y. Li, J. Shi, Mild generation of surface oxygen vacancies on CeO2 for improved CO2 photoreduction activity, Nanoscale 12 (2020) 12374-12382.
[81] Y. Bo, P. Du, H. Li, R. Liu, C. Wang, H. Liu, D. Liu, T. Kong, Z. Lu, C. Gao, Y. Xiong, Bridging Au nanoclusters with ultrathin LDH nanosheets via ligands for enhanced charge transfer in photocatalytic CO2 reduction, Applied Catalysis B: Environmental 330 (2023) 122667.
[82] Z. Jiang, H. Sun, T. Wang, B. Wang, W. Wei, H. Li, S. Yuan, T. An, H. Zhao, J. Yu, P.K. Wong, Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction, Energy & Environmental Science 11 (2018) 2382-2389.
[83] X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction, Journal of the American Chemical Society 139 (2017) 18044-18051.
[84] L. Wen, B. Liu, X. Zhao, K. Nakata, T. Murakami, A. Fujishima, Synthesis, Characterization, and Photocatalysis of Fe-Doped : A Combined Experimental and Theoretical Study, International Journal of Photoenergy 2012 (2012) 1-10.
[85] X. Wu, J. Zhou, Q. Tan, K. Li, Q. Li, S.A. Correia Carabineiro, K. Lv, Remarkable Enhancement of Photocatalytic Activity of High-Energy TiO2 Nanocrystals for NO Oxidation through Surface Defluorination, ACS Applied Materials & Interfaces 16 (2024) 11479-11488.
[86] T. Shen, X. Shi, J. Guo, J. Li, S. Yuan, Photocatalytic removal of NO by light-driven Mn3O4/BiOCl heterojunction photocatalyst: Optimization and mechanism, Chemical Engineering Journal 408 (2021) 128014.
[87] Q. Wu, R. van de Krol, Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant, Journal of the American Chemical Society 134 (2012) 9369-9375.
[88] X. Song, W. Jiang, Z. Cai, X. Yue, X. Chen, W. Dai, X. Fu, Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: The NO+ intermediates mechanism and the storage capacity of Ba ions, Chemical Engineering Journal 444 (2022) 136709.
[89] G. Cheng, X. Liu, X. Song, X. Chen, W. Dai, R. Yuan, X. Fu, Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies, Applied Catalysis B: Environmental 277 (2020) 119196.
[90] Y. Xin, Q. Zhu, T. Gao, X. Li, W. Zhang, H. Wang, D. Ji, Y. Huang, M. Padervand, F. Yu, C. Wang, Photocatalytic NO removal over defective Bi/BiOBr nanoflowers: The inhibition of toxic NO2 intermediate via high humidity, Applied Catalysis B: Environmental 324 (2023) 122238.
[91] L. Liu, P. Ouyang, Y. Li, Y. Duan, F. Dong, K. Lv, Insight into the mechanism of deep NO photo-oxidation by bismuth tantalate with oxygen vacancies, Journal of Hazardous materials 439 (2022) 129637.
[92] N.Q. Thang, A. Sabbah, C.-Y. Huang, N.H. Phuong, T.-Y. Lin, M.K. Hussien, H.-L. Wu, C.-I. Wu, N.N.T. Pham, P. Van Viet, C.-H. Lee, L.-C. Chen, K.-H. Chen, Tailoring atomically dispersed Fe-induced oxygen vacancies for highly efficient gas-phase photocatalytic CO2 reduction and NO removal with diminished noxious byproducts, Journal of Materials Chemistry A 12 (2024) 31847-31860.
[93] Y. Duan, Y. Wang, W. Zhang, J. Zhang, C. Ban, D. Yu, K. Zhou, J. Tang, X. Zhang, X. Han, L. Gan, X. Tao, X. Zhou, Simultaneous CO2 and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production, Advanced Functional Materials 33 (2023) 2301729.
[94] L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M.K.H. Leung, L. Sun, J. Hou, Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO2 Photoreduction, Journal of the American Chemical Society 144 (2022) 17097-17109.
[95] Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Atomic‐Level Reactive Sites for Semiconductor‐Based Photocatalytic CO2 Reduction, Advanced Energy Materials 10 (2020) 1903879.
[96] W. Jiang, H. Loh, B.Q.L. Low, H. Zhu, J. Low, J.Z.X. Heng, K.Y. Tang, Z. Li, X.J. Loh, E. Ye, Y. Xiong, Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction, Applied Catalysis B: Environmental 321 (2023) 122079.
[97] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B Condensed Matter 37 (1988) 785-789.
[98] A. Tkatchenko, R.A. DiStasio, Jr., R. Car, M. Scheffler, Accurate and efficient method for many-body van der Waals interactions, Physical Review Letters 108 (2012) 236402.
[99] K.S. Knight, The crystal structure of russellite; a re-determination using neutron powder diffraction of synthetic Bi2WO6, Mineralogical Magazine 56 (2018) 399-409.
[100] Q. Pan, Y. Chen, H. Li, G. Ma, S. Jiang, X. Cui, L. Zhang, Y. Bao, T. Ma, Size effect of nickel from nanoparticles to clusters to single atoms for electrochemical CO2 reduction, Journal of Materials Chemistry A 12 (2024) 20035-20044.
[101] J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2, Applied Catalysis B: Environmental 206 (2017) 300-307.
[102] L. Xu, X. Ma, N. Sun, F. Chen, Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance, Applied Surface Science 441 (2018) 150-155.
[103] S. Wu, J. Xiong, J. Sun, Z.D. Hood, W. Zeng, Z. Yang, L. Gu, X. Zhang, S.Z. Yang, Hydroxyl-Dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl Photocatalyst, ACS Applied Materials & Interfaces 9 (2017) 16620-16626.
[104] H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai, L. Zhang, Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl, ACS Catalysis 6 (2016) 8276-8285.
[105] L. Hou, M. Zhang, Z. Guan, Q. Li, J. Yang, Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution, Applied Surface Science 428 (2018) 640-647.
[106] X. Ren, M. Gao, Y. Zhang, Z. Zhang, X. Cao, B. Wang, X. Wang, Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism, Applied Catalysis B: Environmental 274 (2020) 119063.
[107] W. Shangguan, Q. Liu, Y. Wang, N. Sun, Y. Liu, R. Zhao, Y. Li, C. Wang, J. Zhao, Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions, Nature Communications 13 (2022) 3894.
[108] M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, J. Ma, Y. Liu, Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework, Nat. Commun. 14 (2023) 2473.
[109] Y.H. Zhong, Y. Wang, S.Y. Zhao, Z.X. Xie, L.H. Chung, W.M. Liao, L. Yu, W.Y. Wong, J. He, Regulating the Electronic Configuration of Ni Sites by Breaking Symmetry of Ni‐Porphyrin to Facilitate CO2 Photocatalytic Reduction, Advanced Functional Materials (2024) 2316199.
[110] Y. Su, Z. Song, W. Zhu, Q. Mu, X. Yuan, Y. Lian, H. Cheng, Z. Deng, M. Chen, W. Yin, Y. Peng, Visible-Light Photocatalytic CO2 Reduction Using Metal-Organic Framework Derived Ni(OH)2 Nanocages: A Synergy from Multiple Light Reflection, Static Charge Transfer, and Oxygen Vacancies, ACS Catalysis 11 (2020) 345-354.
[111] Y. Ji, Y. Luo, New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2 (101) Surface: The Essential Role of Oxygen Vacancy, Journal of the American Chemical Society 138 (2016) 15896-15902.
[112] S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction, Advanced Functional Materials 28 (2018) 1800136.
[113] Y.Y. Li, J.S. Fan, R.Q. Tan, H.C. Yao, Y. Peng, Q.C. Liu, Z.J. Li, Selective Photocatalytic Reduction of CO2 to CH4 Modulated by Chloride Modification on Bi2WO6 Nanosheets, ACS Applied Materials & Interfaces 12 (2020) 54507-54516.
[114] L. Collado, M. Gomez-Mendoza, M. García-Tecedor, F.E. Oropeza, A. Reynal, J.R. Durrant, D.P. Serrano, V.A. de la Peña O’Shea, Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures, Applied Catalysis B: Environmental 324 (2023) 122206.
[115] X.Y. Kong, W.Q. Lee, A.R. Mohamed, S.-P. Chai, Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity, Chemical Engineering Journal 372 (2019) 1183-1193.
[116] B. Wang, S.-Z. Yang, H. Chen, Q. Gao, Y.-X. Weng, W. Zhu, G. Liu, Y. Zhang, Y. Ye, H. Zhu, H. Li, J. Xia, Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion, Applied Catalysis B: Environmental 277 (2020) 119170.
[117] J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Materials Today 32 (2020) 222-243.
[118] Y. Wu, Q. Hu, Q. Chen, X. Jiao, Y. Xie, Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO2 Photoreduction toward C2 Products, Accounts of Chemical Research 56 (2023) 2500-2513.
[119] W.C. Huo, X.a. Dong, J.Y. Li, M. Liu, X.Y. Liu, Y.X. Zhang, F. Dong, Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study, Chemical Engineering Journal 361 (2019) 129-138.
[120] F. Chang, X. Wang, C. Yang, S. Li, J. Wang, W. Yang, F. Dong, X. Hu, D.-g. Liu, Y. Kong, Enhanced photocatalytic NO removal with the superior selectivity for NO2−/NO3− species of Bi12GeO20-based composites via a ball-milling treatment: Synergetic effect of surface oxygen vacancies and n-p heterojunctions, Composites Part B: Engineering 231 (2022) 109600.
[121] W. He, Y. Sun, G. Jiang, H. Huang, X. Zhang, F. Dong, Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway, Applied Catalysis B: Environmental 232 (2018) 340-347.
[122] W. Huo, W. Xu, T. Cao, X. Liu, Y. Zhang, F. Dong, Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study, Applied Catalysis B: Environmental 254 (2019) 206-213.
[123] X. Feng, W. Zhang, Y. Sun, H. Huang, F. Dong, Fe(iii) cluster-grafted (BiO)2CO3 superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation, Environmental Science: Nano 4 (2017) 604-612.
[124] L. Wang, K. Xu, W. Cui, D. Lv, L. Wang, L. Ren, X. Xu, F. Dong, S.X. Dou, W. Hao, Y. Du, Monolayer Epitaxial Heterostructures for Selective Visible‐Light‐Driven Photocatalytic NO Oxidation, Advanced Functional Materials 29 (2019) 1808084.