簡易檢索 / 詳目顯示

研究生: 林宜欣
論文名稱: 交流型電漿顯示器三維數值模擬
Three Dimensional Simulation of AC Plasma Display Panel
指導教授: 柳克強
陳金順
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 108
中文關鍵詞: 電漿流體模型三維模擬電漿顯示器
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交流型電漿顯示器的二維模擬模型已相當廣泛的應用,但許多變數在二維結構中並無法探討,例如定址電極的寬度、阻隔壁、維持電極形狀… …等等的影響。因此必須發展三維模擬模型才可做更多方面的探討。
    本論文研究中發展一套交流型電漿顯示器的三維流體模型。藉由解帕松方程式 (Poisson’s equation)可得空間中隨時變的電位分布,而各粒子的密度分部則是由連續方程式得到。離子部分採用局部電場近似法假設來簡化計算,但由於此近似法對於電子誤差較大,因此使用能量守衡方程式來計算電子能量。由數值方法雙共軛梯度穩定法(BI-CGSTAB)解以上矩陣。
    本論文中,利用此三維模型來探討三種維持電極結構並搭配方塊型阻隔壁的放電。文中提出新型的Y型電極,可提高在陽極的發光效率,並且對於整個槽中的效率也有提升。配合方塊型阻隔壁,新的Y型電極比起傳統型電極可提高23.36%的發光效率,而比起T型電極則可提高10%的發光效率。
    本三維模型由於邊界的假設以及矩陣龐大造成數值誤差,在峰值處邊界有不穩定現象發生,不影響整體放電現象但可藉由考慮更多方向的邊界並配合硬體的升級加以改進以獲得更準確的模擬成果。


    Two dimensional simulation code of AC-PDP has already been widely used to understand the micro-discharge characteristics in the plasma display cell, but there are many variations can not be changed or investigated by the two dimensional simulation, i.e., the width of the address electrode, the effect of barrier ribs, and the shape of the sustain electrodes. Therefore, a three dimensional simulation is necessary for more research.
    A three dimensional simulation code of AC-PDP based on the fluid model has been developed in this research. The voltage varied with time in the cell are solved by the Poisson’s equation, and the electron energy balance equation is considered to obtain the electron temperature precisely. For all the other particles, including the excited species and ions, the Local Field Approximation (LFA) is used to simplify the calculation. The momentum transfer equation and the continuity equation are applied to determine the densities of all the particles in the cell, and all the parameters are solved time-dependently by the numerical method bi-conjugate gradient stabilized algorithm (BI-CGSTAB).
    In the thesis, the three dimensional model will be utilized to study on the effects of different structures of sustain electrode with the WAFFLE cell structure. The new Y-shaped electrode is proposed in the thesis and can utilize the anode region more and utilize the whole cell more efficiently. The new Y-shaped electrode combined with WAFFLE cell can achieve an efficiency improvement of 23.36% to the conventional electrode and 10% to the T-shaped electrode.

    Abstract (Chinese) ..……………………………………………………I Abstract (English) ……………………………………………………..II 致謝…………………………………………………………………….III Content…………………………………………………………………IV 1. Introduction………………………………………………………….1 2. Recent Research……………………………………………………...3 2.1 1-D and 2-D Simulation……………………………………3 2.2 3-D Simulation……………………………………………..6 2.3 The Structures of Cell and Sustain Electrodes……………..12 3. Principles of AC-PDP……………………………………………….16 3.1 Cell Structure……………………………………………...16 3.2 Working Mechanism………………………………………17 4. Simulation Model……………………………………………………19 4.1 Physical Model……………………………………………19 4.1.1 Fluid Model…………………………………….19 4.1.2 Geometric Structure and Boundary Conditions..23 4.1.3 Reactions and Database………………………..27 4.2 Numerical Model………………………………………….33 4.2.1 Finite Difference Method………………………33 4.2.2 Spatial Discretization of the Transport Equations………………………………………34 4.2.3 Spatial Discretization of Poisson’s Function…..39 5. Description of Simulation Codes…………………………………..52 5.1 Visual C++………………………………………………..52 5.2 MATLAB…………………………………………………52 5.3 Procedure of the Simulation………………..……………..54 6. Comparison of the Simulation Results……………………………55 6.1 Initial Conditions…………………………………………..55 6.2 Simulation Results…………………………………………57 7. Simulation Results and Discussion…………………………………65 7.1 Initial Conditions…………………………………………..65 7.2 Fix the Length of the Electrodes…………………………...68 7.2.1 The Address Period ….…………………………71 7.2.2 The Sustain Period……………………………...73 7.3 Elongate the Length of the Electrodes……………………..80 7.3.1 The elongated Y-shaped………………………...80 7.3.2 The T-shaped and Y-shaped electrodes…………82 8. Conclusions and unstable situations…………………….…………87 8.1 Conclusions………………………………………………...87 8.2 The Unstable Situations……………………………............88 Reference…………………………………………………………...…..95 Appendix A……………………………………………………………100 Appendix B……………………………………………………………103 Appendix C……………………………………………………………106

    [1] F. Gray, J. W. Horton, R. C. Mathes, “The Production and Utilization of Television Signal,” Bell Sys. Tech. J., 6, 560 (1927).
    [2] Lawrence E. Tannas, Jr., “Flat Panel Displays And CRTs,” New York:Van Nostrand Reinhold, p. 338.(1985).
    [3] D. L. Bitzer, and H. G. Slottow, “The Plasma Display Panel-A Digitally Addressable Display with Inherent Memory,” AFIPS Conf. Proc., 29, 541(1966).
    [4] T. Shinoda, M. Wakitani, T. Nanto, T. Kurai, N. Awaji, M. Suzuki, ”Improvement of Luminance and Luminous Efficiency of Surface-Discharge Color ac PDP,” SID ’91 digest, p. 724(1991).
    [5] J. Meunier, P. Belenguer, and J. P. Boeuf, “Numerical model of an ac plasma display panel cell in neon-xenon mixtures,” J. Appl. Phys. 78, 731 (1995)
    [6] C. Punset, J.P. Boeuf and L.C. Pitchford, “Two-dimensional simulation of an alternating current matrix plasma display cell: Cross-talk and other geometric effects,” J. Appl. Phys. 83, 1884 (1998).
    [7] J.P. Boeuf, Th. Callegari, C. Punset, and R. Ganter, “Modeling as a Tool for plasma display cell optimization,” Asia Display’98, p.209 (1998)
    [8] Jeong Hyun Seo, Woo Joon Chung, Cha Keun Yoon, “Two-dimension Modeling of a surface type Alternating current plasma display panel cell: discharge dynamics and address voltage effects ,” IEEE Trans. Plasma Sci. 29, 824 (2001)
    [9] H. C.Kim, M. S. Hur, S. S. Yang, S. W. Shin, and J. K Lee, “Three-dimensional fluid simulation of a plasma display panel cell,” J. Appl. Phys. 91, 9513 (2002)
    [10] J. H. Choi, Y. Jung, C.G. Ryu, S. B. Kim and E.H. Choi, ”Space charge effect for sustaining discharge in coplanar AC PDP,” IDW ’02, p.873
    [11] Sean J. Yoon, Insook Lee, and K. Y. Choi, ”Three-dimensional simulation of He/Ne/Xe filled coplanar AC-PDPs,” IDW ’02, p.833
    [12] S. J. Lee, J.K. Lee, and H. J. Hwang, “Improvement of luminance and luminous efficiency by the optimized gas in AC PDP,” IDW ’02, p.805
    [13] C. Punset, S. Cany and J.-P. Boeuf, “Addressing and sustaining in AC coplanar plasma display panels,” J. Appl. Phys. (1999)
    [14] H. C. Kim, S. S. Yang, and J. K. Lee, “Three-dimensional fluid simulation of an AC-PDP cell,” IEEE Trans. Plasma Sci. 30, p.188 (2002)
    [15] S. Rauf and M. J. Kushner, “Dynamics of a coplanar-electrode plasma display panel cell, Ⅰ.Basic operation,” J. Appl. Phys. 85, 3460 (1999)
    [16] S. Rauf and M. J. Kushner, “Dynamics of a coplanar-electrode plasma display panel cell,Ⅱ. Cell optimization,” J. Appl. Phys. 85, 3460 (1999)
    [17] Heui Seob Jeong, Yukio Murakami, Masahiko Seki, and Hiroshi Murakami, ”Discharge characteristics with respect to width of address electrode using three-dimensional analysis,” IEEE Trans. Plasma Sci. 29, 559 Jun. (2001).
    [18] Heui Seob Jeong, Buhm-Jae Shin, and Ki-Woong Whang, ”Two-dimensional multifluid modeling of the He-Xe discharge in an AC plasma display panel,” IEEE Trans. Plasma Sci., 27,p.171, (1999).
    [19] Hagelaar, Gerardus Johannes Maria, ”Modeling of microdischarges for display technology”, Ph.D. thesis,(2000)
    [20] G. Veronis and U. S. Inan, “Simulation studies of the coplanar electrode and other plasma display panel cell designs,” J. Appl, Phys., 91, 9502 (2002)
    [21] G. Veronis and U. S. Inana, “Cell geometry designs for efficient plasma display panels,” J. Appl. Phys., 92, No. 9, Nov.(2002).
    [22] Woo Joon Chung, Jeong Hyun Seo, and Ki-Woong Whang, “Analysis of the address and sustain discharge in an AC PDP cell using three-dimensional simulation,” IEEE Trans. Plasma Sci., 30, April (2002)
    [23] J. P. Boeuf, “Plasma display panel: Physics, recent developments and key issues,” J. Appl. Phys. 36 R53 (2003)
    [24] Sung Soo Yang, Hyun Chul Kim, Sang Woo Ko, and Jae Koo Lee, “Application of Two-Dimensional Numerical Simulation for luminous efficiency improvement in plasma display panel cell ,” IEEE Trans. Plasma Sci., vol. 31 Aug. 2003
    [25] J.P. Boeuf, C. Punset, A. Hirech and H. Doyeux, ”Physics and modeling of plasma display panels,” J. Appl. Phys. 4,1997
    [25] BOLSIG, “Boltzmann solver for the SIGLO-SERIES 1.0,” CPA Toulouse & Kinema Software (1996)
    [26] Siegfried Selberherr, “Analysis and Simulation of Semiconductor Devices,” P156∼P175, Springer-Verlag Wien New York.
    [27] Faires.Burden, “Numerical Methods,” second edition.
    [28] G. S. Chen and D. Y. Yang, “Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation,” Ann. Nucl. Energy, 25, 97-115 (1998)
    [29] 12.Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall, “Global modeling of a dielectric barrier discharge in Ne-Xe mixtures for an alternating current plasma display panel,” J. Appl. Phys., 86, 2431 (1999)
    [30] MATLAB程式設計與應用,張智星
    [31] 國立清華大學工程與系統科學所碩士論文,鄭凱儒
    [32] 國立清華大學工程與系統科學所碩士論文,陳龍志
    [33] Gerjan Hagelaar, Daiyu Hayashi “Discharge efficiency in high Xe content plasma display panels,” J. Appl. Phys., 95, 1656 (2004)
    [34] D. Piscitelli, L.C. Pitchford, “Ion mobilities in Xe/Ne and other rare gas mixtures,” Phys. Rev. E 68, (2003)
    [35] D. J. Eckstrom, H. H. Nakano, “Characteristics of electron beam excited at low pressures as a vacuum ultraviolet source,” J. Appl. Phys. 64, 1679 (1988)
    [36] Woo Joon Chung, Jae Jun Kim, Hyun Sook Bae, Jeong Hyun Seo, and Ki-Woong Whang, “Mechanism of high luminous efficient discharges with high Xe-content
    in AC PDP,” IEEE Trans. Plasma Sci., 31, 1038, (2003)
    [37] 國立清華大學工程與系統科學所碩士論文,江弘棋
    [38] Woo Joon Chung, Jeong Hyun Seo, Dong-Cheol Jeong, and Ki-Woong Whang, “Three-Dimensional Modeling of a surface type alternating current plasma display panel cell: the effect of cell geometry on the discharge characteristics,” IEEE Trans. Plasma Sci., 31, NO. 5, (2003)
    [39] Volker van Elsbergen, Peter K. Bachmann, and Thomas Juestel, “Ion-Induced
    Secondary Electron Emission: A Comparative Study,” SID’00, 2000, pp. 220
    [40] C.H. Shon, J. K. Lee, H. C. Kim and S. W. Shin, “Striation Phenomenon of
    Plasma Display Panel Cell and Its Application to Efficiency Improvement,” SID’01, 2001
    [41] J. O. Hischfelder, C. F. Curtiss, and R. B. Bird, “Molecular theory of gases and liquids,” John Wiley & Sons, Inc. (1954).
    [42] J. Ouyang, Th. Callegari, B. Callier, and J. P. Boeuf, ”Large-Gap AC PDP Coplanar Plasma Display Cells: Macro-Cell Experiments and 3-D Simulations,” IEEE Trans. Plasma Sci. 31, 422 Jun. (2003).
    [43] Insook Lee and K. Y. Choi, “Simulation studies of bus electrode effect on discharge and luminous characteristics of plasma panels,” J. Appl. Phys., 97, 053303 (2005).
    [44] Masataka Uchidoi, “Fourth-Generation PDPs: High Image Quality and Low
    Power Consumption,” SID’04, 2004, pp. 202
    [45] Bo-Sung Kim, Ki-Duck Cho, Heung-Sik Tae, Sang-Hun Jang, and Young-Mo Kim, “Discharge Characteristics of Cross-Shaped Microdischarge Cells in ac-Plasma Display Panel,” IEEE Trans. Plasma Sci., 33, NO. 3, (2005)
    [46] Kimio Amemiya, Toshihiro Komaki, Takashi Nishio, ”High Luminous Efficiency and High Definition Coplanar AC-PDP with “T”-shaped Electrodes,” IDW ’98, p.531
    [47] Yoichi Sato, Kimio Amemiya, Nobuhiko Saegusa, and Masataka Uchidoi,
    “Invited paper: A 50-in. Diagonal Plasma Display Panel with High Luminous Efficiency and High Display Quality,” SID’02, 2002, pp. 1060
    [48] Heiju Uchiike and Takayoshi Hirakawa, “Historical View and CurrentStatus of Plasma Displays,” Conference Record of the Industry Applications Conference. 2003.38th IAS Annual Meeting.2003, 1:45-51 (2003)
    [49] Takayoshi Hirakawa, Takayuki Tezuka, Hiroki Shinoda, and Heiju Uchiike, ”Influence of Sustain Electrodes Structures of Surface-Discharge PDPs on Their Emission Characteristics,” IDW ’03, p.1029

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE