研究生: |
鍾政揚 Chung, Jheng-Yang |
---|---|
論文名稱: |
利用表面增強拉曼光譜研究直線型三核金屬串在不同晶格面上之氧化還原反應 Investigation of redox reactions of metal string complexes connected to varied sites of gold surface by using surface-enhanced Raman scattering spectroscopy |
指導教授: |
陳益佳
Chen, I Chia |
口試委員: |
陳仁焜
Chen, Jen-Kun 黃暄益 Huang, Hsuan-Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 表面增強拉曼光譜 、奈米粒子 、金屬串錯合物 、晶格面 、氧化還原 |
外文關鍵詞: | metalstring |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究Ni3(dpa)4(NCS)2、Ru2Ni(dpa)4Cl2以及Ru2Cu(dpa)4Cl2 (dpa=di-pyridyl-amine)等直線型三核金屬串系列錯合物之振動模式,其中各中心金屬有不同之氧化態,我們使用氦氖雷射(632.8 nm)為激發光源及高解析拉曼光譜系統,分別合成球形(AuNS)、稜形十二面體(AuRD)、立方體(AuCube)、正八面體(AuOh)以及棒狀(AuNR)之金奈米粒子,對各個金屬串分子進行表面增強拉曼光譜(SERS)之偵測,研究具有不同晶格面之奈米粒子對於催化還原金屬串錯合物是否有不同影響,其中稜形十二面體具有晶格面{110},立方體為{100},正八面體為{111},棒狀頭端為{111},側端為{100}及{110},由穿透式電子顯微鏡影像發現除了金棒上是由頭端{111}晶面由錯合物橋接成串,其他奈米粒均是晶面相接成串。在Ni3(dpa)4(NCS)2 ([Ni3]6+),由於金屬之分子軌域d-orbital為全填滿狀態,鍵序為零,因此在固態拉曼光譜中沒有觀察到Ni3對稱伸縮振動νsym Ni3,以奈米金球為基底取得之SERS光譜,則可以觀察到新的譜帶242 cm-1,指認為還原態[Ni3]5+之νNi-Ni。而Ru2Ni(dpa)4Cl2以及Ru2Cu(dpa)4Cl2的拉曼光譜中釕-釕伸縮振動譜帶νRu-Ru,在[Ru2]5+時指認為327 cm-1,[Ru2]4+為312或320 cm-1與其電子組態相關,[Ru2]6+為337 cm-1。在Ni3(dpa)4(NCS)2中,不論何種奈米粒構形中皆出現242 cm-1,表示都還原至[Ni3]5+,此金屬串之還原電位高,並無法區分不同晶格面之差異。而Ru2Ni(dpa)4Cl2中,具有{110}以及{100}的AuRD及AuCube為基底會將[Ru2]5+還原至[Ru2]4+其 νRu-Ru為312 cm-1,而{111}的AuOh則維持在[Ru2]5+,在Ru2Cu(dpa)4Cl2中,不論何種結構皆會還原至[Ru2]4+,但會有波數上的差異,{110}之νRu-Ru會在312 cm-1,{100}及{111}則在320 cm-1,整體而言,顯示出不同晶格面確實有催化能力上的差異,其順序為{110}>{100}>{111}。
In this work, we synthesized various shapes of gold nanocrystals and used metal string complexes Ni3(dpa)4(NCS)2, Ru2Ni(dpa)4Cl2, and Ru2Cu(dpa)4Cl2 to study the redox ability of these nanoparticles. We used He-Ne laser (632.8 nm) as the excitation light source and high-resolution Raman spectroscopy system to obtain their surface-enhanced Raman spectroscopy (SERS) on these nanosubstrates. In order to study the effect of reduction ability of different lattice planes, we used gold nanospherical (AuNS), gold nano rhombic dodecahedron (AuRD), gold nanocube (AuCube), gold nanooctahedral (AuOh) and gold nanorod (AuNR) as the substrate for SERS measurements. Notice that RD has a facet of {110}, a cube is {100}, a Oh is {111}, the end of a rod is {111}, and its lateral facets are {100}/{110}. The molecular d-orbitals of Ni3 in Ni3(dpa)4(NCS)2 are fully filled, hence, the bond order among the metal ions is zero; there is no Ni-Ni bonding in [Ni3]6+, while the reduced form [Ni3]5+ has the Raman band at 242 cm-1 assigned to symmetric Ni3 stretching mode sym Ni3. Using all the gold nanostructures in the present work, the reduced form is observed. In Ru2Ni(dpa)4Cl2 and Ru2Cu(dpa)4Cl2 cases, the Ru-Ru of [Ru2]5+ is 327 cm-1, [Ru2]4+ is 312 or 320 cm-1, [Ru2]6+ is 337 cm-1. In Ru2Ni(dpa)4Cl2, AuRD and AuCube with {110} and {100}, respectively reduced [Ru2]5+ to [Ru2]4+, while AuOh {111} the [Ru2]5+ core remained. For Ru2Cu(dpa)4Cl2, all nanostructures reduced [Ru2]5+ to [Ru2]4+, but {110} reduced to Ru-Ru 312 cm-1, and {100} and {111} to 320 cm-1. Overall, our data display that the reduction ability is {110}>{100}>{111}.
1. Hurley, T. J.; Robinson, M. A. Nickel(I1)-2,2’- Bipyridylamine Sys tem. I. Synthesis and Stereochemistry of the Complexes . Inorg. Chem. 1968, 7, 33-38.
2. Pyrka, G. J.; El-Mekki, M.; Pinkerton, A. A. Structure of the linear trinuclear copper complex, dichlorotetrakis-(di-2-pyridylamido)tricopper J. Chem. Soc., Chem. Commun. 1991, 84-85.
3. Wu, L.-P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.; Hathaway, B. J.; Simmons, C.; Thornton, P. J. Chem. Soc., Dalton Trans. 1991, 993.
4. Aduldecha, S.; Hathaway, B. J. Crystal structure and electronic properties of tetrakis[µ3-bis(2-pyridyl)amido]dichlorotrinickel(II)–water–acetone(1/0.23/0.5) J. Chem. Soc., Dalton Trans. 1991, 993-998.
5. Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M. Structure of a linear unsymmetrical trinuclear cobalt(II) complex with a localized COII–COII bond: dichlorotetrakis[µ3-bis(2-pyridyl)amido]tricobalt(II) J. Chem. Soc., Chem. Commun. 1994, 2377-2378.
6. Cotton, F. A.; Daniels, L. M.; Jordan, G. T., IV. Efficient preparation of a linear, symmetrical, metal–metal bonded tricobalt compound; should we believe there is a bond stretch isomer? Chem. Commun. 1997, 421-422.
7. Cotton, F. A.; Daniels, L. M.; Jordan, G. T., IV; Murillo, C. A. Symmetrical and Unsymmetrical Compounds Having a Linear Co36+ Chain Ligated by a Spiral Set of Dipyridyl Anions J. Am. Chem. Soc. 1997, 119, 10377-10381.
8. Cotton, F. A.; Murillo, C. A.; Wang, X. Can crystal structure determine molecular structure? For Co3(dpa)4Cl2, yes J. Chem. Soc., Dalton Trans. 1999, 3327-3328.
9. Sheu, J.-T.; Lin, C.-C.; Chao, I.; Wang, C.-C.; Peng, S.-M. Linear trinuclear three-centred metal–metal multiple bonds: synthesis and crystal structure of [M3(dpa)4Cl2][M = RuII or RhII, dpa = bis(2-pyridyl)amidoanion] Chem. Commun. 1996, 315-316.
10. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. Evaluation of the Molecular Configuration Integral in All Degrees of Freedom for the Direct Calculation of Binding Free Energies: Application to the Enantioselective Binding of Amino Acid Derivatives to Synthetic Host Molecules J. Am. Chem. Soc. 1997, 119, 10233-10234.
11. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. Tuning metal-to-metal distances in linear trichromium units Inorg. Chem. Commun. 1998, 1, 1-3.
12. Cle´rac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. Further Study of the Linear Trinickel(II) Complex of Dipyridylamide Inorg. Chem. 1999, 38, 2655-2657.
13. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A. A Trinickel Dipyridylamido Complex with Metal−Metal Bonding Interaction: Prelude to Polynickel Molecular Wires and Devices? J. Am. Chem. Soc. 2002, 124, 3212-3213.
14. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Oxidation of Ni3(dpa)4Cl2 and Cu3(dpa)4Cl2: Nickel−Nickel Bonding Interaction, but No Copper−Copper Bonds. Inorg. Chem. 2003, 42, 2418-2427.
15. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Wang, X. Enhancing the Stability of Trinickel Molecular Wires and Switches: Ni36+/Ni37+ Inorg. Chem. 2003, 42, 3595.
16. Cotton, F. A.; Daniels, L. M.;Jordan, G. T., IV; Murillo, C. A. Symmetrical and Unsymmetrical Compounds Having a Linear Co36+ Chain Ligated by a Spiral Set of Dipyridyl Anions. J. Am. Chem.Soc. 1997, 119, 10377-10381.
17. Cotton, F. A.; Murillo, C. A.; Wang, X. Linear Tricobalt Compounds with Di-(2-pyridyl)amide (dpa) Ligands: Studies of the Paramagnetic Compound Co3(dpa)4Cl2 in Solution. Inorg. Chem. 1999, 38, 6294-6297.
18. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X. Linear Tricobalt Compounds with Di(2-pyridyl)amide (dpa) Ligands: Temperature Dependence of the Structural and Magnetic Properties of Symmetrical and Unsymmetrical Forms of Co3(dpa)4Cl2 in the Solid State. J. Am. Chem. Soc.2000, 122, 6226-6236.
19. Cle´rac, R.; Cotton, F. A.; Dunbar, K. R.; Lu, T.; Murillo, C. A.; Wang, X. New Linear Tricobalt Complex of Di(2-pyridyl)amide (dpa), [Co3(dpa)4(CH3CN)2][PF6]2. Inorg. Chem. 2000, 39, 3065.
20. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Tuning the Metal−Metal Bonds in the Linear Tricobalt Compound Co3(dpa)4Cl2: Bond-Stretch and Spin-State Isomers. Inorg. Chem. 2001, 40, 1256-1264.
21. Cle´rac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X. Compounds with Symmetrical Tricobalt Chains Wrapped by Dipyridylamide Ligands and Cyanide or Isothiocyanate Ions as Terminal Ligands. Inorg. Chem. 2001, 40, 1265-1270.
22. Cle´rac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X. Structural and magnetic properties of Co3(dpa)4Br2. J. Chem. Soc., Dalton Trans., 2001, 386-391.
23. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K. An Efficient Synthesis of Acetylide/Trimetal/Acetylide Molecular Wires. Inorg. Chem. 2004, 43, 2277-2283.
24. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Lu, T.; Murillo, C.A.; Wang, X. A New Linear Tricobalt Compound with Di(2-pyridyl)amide (dpa) Ligands: Two-Step Spin Crossover of [Co3(dpa)4Cl2][BF4]. J. Am. Chem. Soc. 2000, 122, 2272-2278.
25. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Pascual, I. Linear Trichromium Complexes with Direct Cr to Cr Contacts. 1. Compounds with Cr3(dipyridylamide)42+ Cores. Inorg. Chem. 2000, 39, 748-751.
26. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Pascual, I. Linear Trichromium Complexes with Direct Cr to Cr Contacts. 2. Compounds with Cr3(dipyridylamide)43+ Cores. Inorg. Chem. 2000, 39, 752-756.
27. Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Zhou, H.-C. Linear Trichromium Complexes with the Anion of 2,6-Di(phenylimino)piperidine Inorg. Chem. 2000, 39, 3414-3417.
28. Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. Molecular and Electronic Structures by Design: Tuning Symmetrical and Unsymmetrical Linear Trichromium Chains. J. Am. Chem. Soc. 2004, 126, 7082-7096.
29. 謝明勳,九十學年度國立台灣大學碩士論文。
30. (a) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Atoms, 2nd ed.; Clarendon Press: Oxford, 1993.
(b) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1988, Chap. 23..
31. Wang, C.-C.; Lo, W.-C.; Chou, C.-C.; Lee, G.-H.; Chen, J.-M.; Peng, S.-M. Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(II) Complexes: [Ni5(μ5-tpda)4X2] (X = Cl-, CN-, N3-, NCS-) and [Ni5(μ5-tpda)4(CH3CN)2]- (PF6)2 (tpda2- = the Tripyridyldiamido Dianion). Inorg. Chem. 1998, 37, 4059-4065.
32. Rohmer, M.-M.; Be´nard, M. Bond Stretch Isomerism Still Elusive in Linear Trimetallic Complexes. DFT Calculations on Co3(dipyridylamine)4Cl2. J. Am. Chem. Soc. 1998, 120, 9372-9373.
33. Rohmer, M.-M.; Strich, A.; Be´nard, M.; Malrieu, J.-P. Metal−Metal Bond Length Variability in Co3(dipyridylamide)4Cl2: Bond-Stretch Isomerism, Crystal Field Effects, or Spin Transition Process? A DFT Study. J. Am. Chem. Soc. 2001, 123, 9126-9134.
34. Pantazis, D. A.; McGrady, J. E. A Three-State Model for the Polymorphism in Linear Tricobalt Compounds. J. Am. Chem. Soc., 2006, 128, 4128-4135.
35. Benbellat, N.; Rohmer, M.-M.; Be´nard, M. Electronic origin of the structural versatility in linear trichromium complexes of dipyridylamide Chem. Commun. 2001, 2368-2369.
36. Rohmer, M.-M.; Be´nard, M. Structural Versatility in Polyoxometalates and in Some Linear Trimetallic Complexes: An Electronic Interpretation. J. Cluster Sci. 2002, 13, 333-353.
37. 賴思學,九十五學年度國立清華大學碩士論文。
38. Papas, B.N.; Schaefer III, H.F. Homonuclear transition-metal trimers. J. Chem. Phys. 2005, 123, 74321.
39. Talaty, E. R.; Raja, S.; Storhaug, V. J.; Dolle, A.; Carper, W. R. Raman and Infrared Spectra and ab Initio Calculations of C2-4MIM Imidazolium Hexafluorophosphate Ionic Liquids. J. Phys. Chem. B 2004, 108, 13177-13184.
40. Cotton, F. A.; Fanwick, P. E.; Niswander, R. H.; Sekutowski. A triad of homologous, air-stable compounds containing short, quadruple bonds between metal atoms of Group 6. J. Am. Chem. Soc. 1978, 100, 4725-4732.
41. Gin-Chen Huang, Marc Bénard, Marie-Madeleine Rohmer, Long-An Li, Mei-Jyun Chiu, Chen-Yu Yeh, Gene-Hsiang Lee, and Shie-Ming Pengc. Ru2M(dpa)4Cl2 (M = Cu, Ni): Synthesis, Characterization, and Theoretical Analysis of Asymmetric Heterometal String Complexes of the Dipyridylamide Family. Eur. J. Inorg. Chem. 2008, 1767–1777.
42. Joelma Perez and Ernesto R. Gonzalez. Hydrogen Evolution Reaction on Gold Single-Crystal Electrodes in Acid Solutions. J. Phys. Chem. B 1998, 102, 10931-10935.
43. Wu, B. H.; Lin, J. Y.; Ho, K. Y.; Huang, M. J.; Hua, S. A.; Cheng, M. C.; Yang, Y. W.; Peng, S. M.; Chen, C. H. and Chen, I. C. Determination of the Valence State of Diruthenium Moiety Using Redox Reactions and Surface-Enhanced Raman Scattering: Application in Heterometal Extended Metal-Atom Chain Diruthenium Nickel Complexes. J. Phys. Chem. C 2016, 120, 20297−20302.
44. Chiu, C. Y.; Chung P. J.; Lao, K. U.; Liao, C. W. and Huang, M. H. Facet-Dependent Catalytic Activity of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra toward 4-Nitroaniline Reduction. J. Phys. Chem. C 2012, 116, 23757−23763.
45. Ahn, J.; Wang, D.; Yong, Ding.; Zhang, J. and Qin, D. Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au–Ag Alloy Frames. ACS Nano, 2018, 12, 298−307.
46. Wu, B. H.; Hung, L. Y.; Chung, J. Y.; Peng, S. M. and Chen, I. C. Determination of the Ni–Ni Bonding Strength in Metal-String Complexes Using Head-to-Head Nanorods and Electrochemical Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C, 2018, 122, 6332−6339.
47. Hirao, T. Redox Systems Under Nano-Space Control; Springer, 2006.
48. Meena, S. K,; Celiksoy, S.; Scha¨fer, P.; Andreas, H.; So¨nnichsenb, C. and Sulpizi M. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. J. Phys. Chem.Chem.Phys. 2016, 18, 13246-13254
49. Tanabe, I.; Egashira, M.; Suzuki, T.; Goto, T.; Ozaki, Y. Prevention of Photooxidation of Deoxymyoglobin and Reduced Cytochrome c during Enhanced Raman Measurements: SERRS with Thiol-Protected Ag Nanoparticles and a TERS Technique. J. Phys. Chem. C, 2014, 118, 10329−10334.
50. V. M. Miskowski, H. B. Gray. Electronic Spectra of Ru2(carboxylate)4+ Complexes. Higher Energy Electronic Excited States. Inorg. Chem. 1988, 27, 2501-2056 and references cited therein.