研究生: |
蔡文心 Tsai, Wen-Hsin. |
---|---|
論文名稱: |
量子點/二氧化矽奈米複合物之製備與應用 Preparation and Application of Quantum Dot/Silica Nanocomposites |
指導教授: |
陳學仕
Chen, Hsueh-Shih |
口試委員: |
吳志明
Wu, Jyh-Ming 鍾淑茹 Chung, Shu-Ru |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 量子點 、二氧化矽 、鈍化 、高分子薄膜 、穩定性 |
外文關鍵詞: | quantum dots, silica, passivation, polymer film, stability |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇研究中,主要探討了不同形貌之量子點/二氧化矽對於其應用於高分 子/量子點增色膜性能之影響。首先,藉由 (1) 逆微胞法及 (2) 在甲苯中直接包 覆二氧化矽層於量子點表面兩種不同的製備過程,分別合成出圓球形二氧化矽 層包覆之量子點與薄殼型二氧化矽包覆之量子點,並在此部分探討了不同製備 過程對於量子點光學性質及化學性質之影響。接著我們將此兩種不同量子點/二 氧化矽與未包覆之量子點加入於壓克力單體中並製備成高分子/量子點增色膜, 可發現雖然薄殼型二氧化矽包覆之量子點之發光效率相較於未包覆之量子點下 降約四成,但封裝於高分子基材後卻可保有可與未包覆之量子點比擬之光轉換 效率,在本篇研究中,朝向量子點在高分子基材中的絕對效率與出光性質作深入 的探討,並確認二氧化矽層有效提升了量子點的耐熱性質。
In this study, we make a detailed investigation into the relationship between the different morphologies of silica-coated ZnCdSSe QDs nanocomposites and its performance in quantum dot films. At the beginning, we present two processes to synthesize silica-coated ZnCdSSe QDs nanocomposites and can obtain two significantly different morphologies, one is with sphere-shaped silica layer, and another is with ultra-thin silica layer. Also, the comparison of the optical and chemical properties of these two types of silica-coated ZnCdSSe nanocomposites are what we focused in this study. Next, we apply the uncoated ZnCdSSe QDs and two types of silica-coated ZnCdSSe nanocomposites in the quantum dot films and systematically analyze the factors which influence the optical properties from different aspects, such as the quantum yield after the quantum dots are encapsulated in the films and the possible scattering mechanism of the excitation light and emission light between the polymer matrix and the quantum dots. Finally, the thermal stability and the practical application of the quantum dot films are compared in this study.
[1] F. Chen and D. Gerion, Nano Lett., 2004, 4, 1827–1832.
[2] T. Zhang, J. L. Stilwell, D. Gerion, L. Ding, O. Elboudwarej, P. A. Cooke, J. W.
Gray, A. P. Alivisatos, and F. F. Chen, Nano Lett., 2006, 6, 800-808.
[3] S. Jun, J. Lee, and E. Jang, ACS Nano, 2013, 7, 1472-1477.
[4] V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, O. C. Farokhzad, Nano Lett., 2007, 7, 3065-3070.
[5] X. Hu. and X. Gao, ACS nano, 2010, 4, 6080-6086.
[6] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S.
Sto1lzle, N. Fertig, and W. J. Parak, Nano Lett., 2005, 5, 331-338.
[7] S. T. Selvan, T. T. Tan, and J. Y. Ying, Adv. Mater., 2005, 17, 1620-1625.
[8] W. Stöber, A. FINK, and E. Bohn, J. Colloid Interface Sci. ,1968, 26, 62-69.
[9] A. L. Rogach, D. Nagesha, J. W. Ostrander, M. Giersig, and N. A. Kotov, Chem. Mater., 2000, 12, 2676-2685.
[10] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861-8871.
[11] T. Nann, and P. Mulvaney, Angew. Chem. Int. Ed., 2004, 43, 5393-5396.
[12] M. Darbandi, R. Thomann, and T. Nann, Chem. Mater., 2005, 17, 5720-5725.
[13] N. R. Jana, C. Earhart, and J. Y. Ying, Chem. Mater., 2007, 19, 5074-5082. [14] H. Chen, C. Hsu, and H. Hong, IEEE Photon. Technol. Lett., 18, 193-195. [15] V. I. Klimov, J. Phys. Chem. B, 2006, 110, 16827-16845.
[16] A. M. Smith, and S. Nie, Acc. Chem. Res., 2010, 43, 190-200.
[17] S. K. Shin, H. Yoon, Y. J. Jung, and J. W. Park, Curr. Opin. Biotechnol., 2006, 10, 423-429.
[18] T. H. Gfroerer, Encyclopedia of Analytical Chemistry, 2000, 9209-9231.
[19] K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, and D. Zhang, J. Phys. Chem., 1996, 100, 12142-12153.
[20] K. Jeon, S. Oh, Y. D. Suh, H. Yoshikawa, H. Masuharac, and M. Yoon, Phys.
Chem. Chem. Phys., 2009, 11, 534-542.
[21] P. Reiss, M. Protiere and L. Li, Small, 2009, 5, 154-168.
[22] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 2001, 1, 207-211.
[23] D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L.
Rogach, O. Benson, J. Feldmann and H. Weller, Nano Lett., 2003, 3, 1677-1681. [24] D. V. Talapin, I. Mekis, S. Go1tzinger, A. Kornowski, O. Benson, and H. Weller, J. Phys. Chem. B, 2004, 108, 18826-18831.
[25] R. A. Sperling, and W. J. Parak, Phil. Trans. R. Soc. A, 2010, 368, 1333-1383. [26] H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, Adv. Mater., 2003, 15, 777-780.
[27] H. S. Chen, M. Ando, and N. Murase, Mater. Lett., 2011, 65, 3146-3149.
[28] S. Jun, J. Lee, and E. Jang, ACS Nano, 2013, 7, 1472-1477.
[29] A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. Chen, and J. Z. Zhang, J. Phys. Chem. B, 2006, 110, 5779-5789.
[30] B. Jirgensons, ME Stranmains, Colloid Chemistry, McMillan, New York. 1962.
[31] R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry, Wiley, New York, 1979.
[32] A. S. Dorcheh, M.H. Abbasi, J. Mater. Process. Technol., 2008, 199, 10-26.
[33] L. Chu, M.I. Tejedor-Tejedor, M.A. Anderson, Microporous Mater., 1997, 8, 207-213.
[34] R.A. Assink, and B.D. Kay, J. Non-cryst. Solids., 1988, 99, 359.
[35] C.J. Brinker, G. W. Sherer, The Physics and Chemistry of Sol-Gel Processing, 1990, 108-215.
[36] M. J. Lawrence, and G. D. Rees, Adv. Drug Deliv. Rev., 2000, 45, 89-121.
[37] R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, Chem. Mater., 2008, 20, 2503.
[38] Masanori Ando, Chunliang Li, Ping Yang, and Norio Murase, J. Biomed. Biotechnol., 2007, 2008.
[39] I. M. Kooter, A. J. Pierik, M. Merkx, B. A. Averill, N. Moguilevsky, A. Bollen, and R. Wever, J. Am. Chem. Soc., 1997, 119, 11542-11543.
[40] R. Hong, J. Li, S. Zhang, H. Li, Y. Zheng, J. Ding, and D. Wei, Appl. Surf. Sci., 2009, 255, 3485-3492.
[41] K. M. Kim, J. H. Jeon, Y. Y. Kim, H. K. Lee, O O. Park, and D. H. Wang, Org. Electron., 2015, 25, 44-49.
[42] J. Poppe, S. Gabriel, L. Liebscher, S. G. Hickey, and A. Eychmuller, J. Mater. Chem. C, 2013, 1, 1515-1524.
[43] Ayyaswamy Arivarasan, Ganapathy Sasikala, Ramasamy Jayavel, Mater. Sci. Semicond. Process, 2014, 25, 238-243.
[44] K. Koc, F. Z. Tepehan, and G. G. Tepehan, Chalcogenide Lett., 2011, 8, 239-247.
[45] H. Jiang, and H. Ju, Anal. Chem., 2007, 79, 6690-6696.
[46] K. S. Aneja, S. Bohm, A. S. Khannaa, and H. L. M. Bohmc, Nanoscale, 2015, 7, 17879-17888.
[47] S. Musić, N. Filipović-Vinceković, and L. Sekovanić, Braz. J. Chem. Eng., 2011, 28, 89-94.
[48] S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. D. Donega, Nano Lett., 2003, 3, 503-507.
[49] M. Andoa, Y. Pinga, and N. Murasea, Phys Procedia., 2010, 3, 1553-1555.
[50] S. Jeong, J. S. Lee, J. Nam, K. Im, J. Hur, J. J. Park, J. M. Kim, B. Chon, T. Joo, and S. Kim, J. Phys. Chem. C, 2010, 114, 14362–14367.
[51] J. J. Park, P. Prabhakaran, K. K. Jang, Y. G. Lee, J. Lee, K. H. Lee, J. Hur, J. M. Kim, N. Cho, Y. Son, D. Y. Yang, and K. S. Lee, Nano Lett., 2010, 10, 2310-2317.
[52] M. S. Mehata, M. Majumder, B. Mallik, and N. Ohta, J. Phys. Chem. C, 2010, 114, 15594-15601.
[53] Y. Du, P. Yang, H. S. Chen, Q. Che, Y. Liu, H. He, Y. Miao, and J. Zhao, RSC Adv., 2014, 4, 59733-59739.
[54] M. Vasileiadis, I. Koutselas, S. Pispas and N. A. Vainos, J. Polym. Sci. B Polym. Phys., 2016, 54, 552-560.
[55] H. Y. Kim, D. E. Yoon, J. Jang, D. Lee, G. M. Choi, J. H. Chang, J. Y. Lee, D. C. Lee, and B. S. Bae, J. Am. Chem. Soc., 2016, 138, 16478−16485.
[56] C. F. Wang, F. Fan, R. P. Sabatini, O. Voznyy, K. Bicanic, X. Li, D. P. Sellan, M. Saravanapavanantham, N. Hossain,K. Chen, S. Hoogland, and E. H. Sargent, Chem. Mater., 2017, 29, 5104-5112.
[57] J. Y. Lien, C. J. Chen, R. K. Chiang, and S. L. Wang, OPT EXPRESS, 2016, 24, A1021-A1032.
[58] W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, Nanophotonics, 2016, 5, 565-572.
[59] M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, ACS Appl. Mater. Interfaces, 2015, 7, 23364−23371.
[60] M.Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. Soran-Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, Adv. Funct. Mater., 2015, 25, 2638–2645.