簡易檢索 / 詳目顯示

研究生: 王初銘
Wang, Zhi-Min
論文名稱: 基於多重感測器融合與長短期記憶模型預測可穿戴式感測器剩餘使用壽命
Multi-Sensor Fusion for Remaining Useful Life Prediction in Wearable Sensors using LSTM Architecture
指導教授: 張世杰
Chang, Shih-Chieh
口試委員: 張世杰
Chang, Shih-Chieh
李昀儒
Lee, Yun-Ju
楊秉祥
Yang, Bing-Shiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 35
中文關鍵詞: 剩餘使用壽命長短期記憶模多傳感器
外文關鍵詞: multi sensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可靠的設備功能對於醫療診斷步態分析必不可少。預測和健康管理策

    略可通過傳感器監控設備的剩餘使用壽命及識別故障設備,以最大程

    度地減少潛在的致命誤診。剩餘使用壽命的概念在航空航天工程,製

    造工程和電氣工程領域得到了很好的研究。然而,其在生物力學中的

    應用仍未得到開發。這項研究的目的是通過使用基於機器學習的特徵

    重要性機制,通過對各種可穿戴式步態傳感器(IMU、壓力傳感器)

    進行融合以得到有指標性的傳感器數據,來構建生物力學傳感器系統,

    進而增強設備的剩餘使用壽命的數據表示能力。並且,使用 LSTM 的模

    型架構將該數據用於預測剩餘使用壽命。實驗是根據從候選對象獲得

    的數據進行的,結果顯示,與基於壓力傳感器的模型架構相比,RMSE

    和加權分數分別提高了 25.68%和 49.62%


    Equipment reliability is crucial for medical diagnostic gait analysis. Prognostics and
    health management strategies may be employed, by monitoring the remaining useful life
    of an equipment through sensors, and identifying faulty equipment to minimise potential
    fatal misdiagnosis. The concept of remaining useful life is well studied in the field of
    aerospace engineering, manufacturing engineering, and electrical engineering; however,
    its application for biomechanics remains underexplored. The purpose of this study is to
    construct a biomechanical sensor system, by performing fusion on varied wearable gait

    sensors (IMU, pressure sensor) to leverage unique sensor data, using a machine learning-
    based feature importance mechanism, whereby an enhanced data representation of the

    equipment’s remaining useful life degradation is obtained. Then, this data is utilized to

    predict the remaining useful life using an LSTM architecture. The experiment is con-
    ducted on data obtained from human candidates, and results indicate RMSE and score

    improvement of 25.68% and 49.62% respectively, when compared to a pressure sensor
    based architecture.

    1 Introduction 1 1.1 Remaining Useful Life and PHM . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Work 5 2.1 Aerospace Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Manufacturing Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Electrical Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Wearable Sensor RUL Prediction 8 3.1 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VI 3.1.2 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 Recurrent Neural Network and LSTM . . . . . . . . . . . . . . . 12 3.2.2 Bidirectional LSTM . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Remaining Useful Life Construction . . . . . . . . . . . . . . . . . . . . 14 3.4 Subjects and Experimental Procedures . . . . . . . . . . . . . . . . . . . 15 3.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Evaluation 19 4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.2 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Baseline Method for Comparison . . . . . . . . . . . . . . . . . 23 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Conclusion 27

    References

    [1] J. B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, and F. Fnaiech. Accurate
    bearing remaining useful life prediction based on weibull distribution and artificial
    neural network. Mechanical Systems and Signal Processing, 56:150–172, 2015.

    [2] A. R. Anwary, H. Yu, and M. Vassallo. Optimal foot location for placing wear-
    able imu sensors and automatic feature extraction for gait analysis. IEEE Sensors

    Journal, 18(6):2555–2567, 2018.

    [3] G. S. Babu, P. Zhao, and X.-L. Li. Deep convolutional neural network based regres-
    sion approach for estimation of remaining useful life. In International conference

    on database systems for advanced applications, pages 214–228. Springer, 2016.

    [4] J. Barth, J. Klucken, P. Kugler, T. Kammerer, R. Steidl, J. Winkler, J. Hornegger,
    and B. Eskofier. Biometric and mobile gait analysis for early diagnosis and therapy
    monitoring in parkinson’s disease. In 2011 Annual International Conference of the
    IEEE Engineering in Medicine and Biology Society, pages 868–871. IEEE, 2011.

    28

    [5] M. Basaldella, E. Antolli, G. Serra, and C. Tasso. Bidirectional lstm recurrent neu-
    ral network for keyphrase extraction. In Italian Research Conference on Digital

    Libraries, pages 180–187. Springer, 2018.

    [6] M. Baumers, P. Dickens, C. Tuck, and R. Hague. The cost of additive manufactur-
    ing: machine productivity, economies of scale and technology-push. Technological

    forecasting and social change, 102:193–201, 2016.

    [7] R. Bogue. Recent developments in mems sensors: A review of applications, markets
    and technologies. Sensor Review, 2013.

    [8] C. M. Burt, X. Piao, F. Gaudi, B. Busch, and N. Taufik. Electric motor efficiency un-
    der variable frequencies and loads. Journal of irrigation and drainage engineering,

    134(2):129–136, 2008.

    [9] C. Butler, D. Newport, and M. Geron. Optimising the locations of thermally sensi-
    tive equipment in an aircraft crown compartment. Aerospace Science and Technol-
    ogy, 28(1):391–400, 2013.

    [10] S. Butler and J. Ringwood. Particle filters for remaining useful life estimation of
    abatement equipment used in semiconductor manufacturing. In 2010 Conference on
    Control and Fault-Tolerant Systems (SysTol), pages 436–441. IEEE, 2010.

    [11] C. S. Byington, M. Watson, D. Edwards, and P. Stoelting. A model-based approach
    to prognostics and health management for flight control actuators. In 2004 IEEE
    Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), volume 6, pages
    3551–3562. IEEE, 2004.

    [12] C. Chen, G. Vachtsevanos, and M. E. Orchard. Machine remaining useful life predic-
    tion: An integrated adaptive neuro-fuzzy and high-order particle filtering approach.

    Mechanical Systems and Signal Processing, 28:597–607, 2012.

    [13] C. Duvvury and A. Amerasekera. Esd: A pervasive reliability concern for ic tech-
    nologies. Proceedings of the IEEE, 81(5):690–702, 1993.

    [14] M. Garcia, P. A. Panagiotou, J. A. Antonino-Daviu, and K. N. Gyftakis. Efficiency
    assessment of induction motors operating under different faulty conditions. IEEE
    Transactions on Industrial Electronics, 66(10):8072–8081, 2018.

    [15] F. A. Gers, D. Eck, and J. Schmidhuber. Applying lstm to time series predictable
    through time-window approaches. In Neural Nets WIRN Vietri-01, pages 193–200.
    Springer, 2002.

    [16] M. Hildebrandt, M. Khalil, C. Bergs, V. Tresp, R. Wuchner, K.-U. Bletzinger, and

    M. Heizmann. Remaining useful life estimation for unknown motors using a hy-
    brid modeling approach. In 2019 IEEE 17th International Conference on Industrial

    Informatics (INDIN), volume 1, pages 1327–1332. IEEE, 2019.

    30

    [17] Hsu. Prediction of center of pressure trajectory in gait via combinations of inertial
    measurement unit. In Unpublished. National Tsing Hua University, 2020.

    [18] R. C. Juvinall and K. M. Marshek. Fundamentals of machine component design.
    John Wiley & Sons, 2020.

    [19] S. Kumar and M. Pecht. Modeling approaches for prognostics and health man-
    agement of electronics. International Journal of Performability Engineering, 6, 09

    2010.

    [20] S. M. Lasassmeh and J. M. Conrad. Time synchronization in wireless sensor net-
    works: A survey. In Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon),

    pages 242–245. IEEE, 2010.

    [21] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel. Prognostics and health

    management design for rotary machinery systems—reviews, methodology and ap-
    plications. Mechanical systems and signal processing, 42(1-2):314–334, 2014.

    [22] Y. Li, Z. Zhu, D. Kong, H. Han, and Y. Zhao. Ea-lstm: Evolutionary attention-based
    lstm for time series prediction. Knowledge-Based Systems, 181:104785, 2019.

    [23] Z. Liu, G. Sun, S. Bu, J. Han, X. Tang, and M. Pecht. Particle learning framework
    for estimating the remaining useful life of lithium-ion batteries. IEEE Transactions
    on Instrumentation and Measurement, 66(2):280–293, 2016.

    [24] K. Maraiya, K. Kant, and N. Gupta. Wireless sensor network: a review on data
    aggregation. International Journal of Scientific & Engineering Research, 2(4):1–6,
    2011.

    [25] M. Pecht and R. Jaai. A prognostics and health management roadmap for informa-
    tion and electronics-rich systems. In Microelectronics Reliability, pages 317–323.

    Elsevier, 2010.

    [26] A. Phinyomark, G. Petri, E. Iba ́nez-Marcelo, S. T. Osis, and R. Ferber. Analysis ̃
    of big data in gait biomechanics: Current trends and future directions. Journal of
    medical and biological engineering, 38(2):244–260, 2018.

    [27] Ronaghan. The mathematics of decision trees, random forest and feature importance
    in scikit-learn and spark. Towards data science, 2018.

    [28] J. Z. Sasiadek. Sensor fusion. Annual Reviews in Control, 26(2):203–228, 2002.

    [29] A. Saxena, K. Goebel, D. Simon, and N. Eklund. Damage propagation modeling
    for aircraft engine run-to-failure simulation. In 2008 international conference on
    prognostics and health management, pages 1–9. IEEE, 2008.

    [30] B. Sun, Y. Li, Z. Wang, Y. Ren, Q. Feng, D. Yang, M. Lu, and X. Chen. Remain-
    ing useful life prediction of aviation circular electrical connectors using vibration-

    induced physical model and particle filtering method. Microelectronics Reliability,
    92:114–122, 2019.

    [31] C. Sun, M. Ma, Z. Zhao, S. Tian, R. Yan, and X. Chen. Deep transfer learning based
    on sparse autoencoder for remaining useful life prediction of tool in manufacturing.
    IEEE Transactions on Industrial Informatics, 15(4):2416–2425, 2018.

    [32] D. H. Sutherland. The evolution of clinical gait analysis: Part ii kinematics. Gait &
    posture, 16(2):159–179, 2002.

    [33] D. H. Sutherland. The evolution of clinical gait analysis part iii–kinetics and energy
    assessment. Gait & posture, 21(4):447–461, 2005.

    [34] E. Taheri, I. Kolmanovsky, and O. Gusikhin. Survey of prognostics methods for
    condition-based maintenance in engineering systems, 12 2019.

    [35] X. Wei and G. Yingqing. Aircraft engine sensor fault diagnostics based on estima-
    tion of engine’s health degradation. Chinese Journal of Aeronautics, 22(1):18–21,

    2009.

    [36] T. A. Wren, K. P. Do, S. A. Rethlefsen, and B. Healy. Cross-correlation as a method

    for comparing dynamic electromyography signals during gait. Journal of biome-
    chanics, 39(14):2714–2718, 2006.

    [37] T. Xia, Y. Dong, L. Xiao, S. Du, E. Pan, and L. Xi. Recent advances in prognostics

    and health management for advanced manufacturing paradigms. Reliability Engi-
    neering & System Safety, 178:255–268, 2018.

    [38] R. Yam, P. Tse, L. Li, and P. Tu. Intelligent predictive decision support system for

    condition-based maintenance. The International Journal of Advanced Manufactur-
    ing Technology, 17(5):383–391, 2001.

    [39] F. Yang, M. S. Habibullah, T. Zhang, Z. Xu, P. Lim, and S. Nadarajan. Health index-
    based prognostics for remaining useful life predictions in electrical machines. IEEE

    Transactions on Industrial Electronics, 63(4):2633–2644, 2016.

    [40] Yang Feng, Yuncheng Li, and Jiebo Luo. Learning effective gait features using
    lstm. In 2016 23rd International Conference on Pattern Recognition (ICPR), pages
    325–330, 2016.

    [41] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta. Long short-term memory network
    for remaining useful life estimation. In 2017 IEEE international conference on
    prognostics and health management (ICPHM), pages 88–95. IEEE, 2017.

    [42] J. Zhu, N. Chen, and W. Peng. Estimation of bearing remaining useful life based on

    multiscale convolutional neural network. IEEE Transactions on Industrial Electron-
    ics, 66(4):3208–3216, 2018.

    [43] E. Zio. Prognostics and health management of industrial equipment. In Diagnostics
    and prognostics of engineering systems: methods and techniques, pages 333–356.
    IGI Global, 2013.

    QR CODE