簡易檢索 / 詳目顯示

研究生: 方齊均
Fang, Chi-Chun
論文名稱: 針對線長最小化對考慮多層多重微影技術的整數倍列高標準元件擺置合法化技術
Wirelength Minimization for Multiple-Layer Multiple-Patterning Aware Placement Legalization with Multiple-Row Height Standard Cells
指導教授: 王廷基
Wang, Ting-Chi
口試委員: 陳宏明
Chen, Hung-Ming
陳勝雄
Chen, Sheng-Shiung
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 22
中文關鍵詞: 標準元件擺置擺置合法化多重微影技術
外文關鍵詞: Standard Cell Placement, Placement Legalization, MPL
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研究考量多重微影技術放置的合法化問題,並考慮到整數倍列高標準元與多重微影層。進行時序優化所使用之緩衝閘插入與標準元件大小之更改等技術極有可能導致標準元件之間重疊且無法進行多重微影分解,因而此問題將針對已知佈局分解的合法標準元件擺置進行時序優化後的情況進行處理。我們提出了一個方法以解決上述之標準元件放置合法化之相關問題,利用合法的擺置標準元件並且令每個多重微影層產生盡可能少的著色衝突來處理此問題。實驗結果顯示,我們提出的研究方法可以同時使給定的佈局合法化並為每個多重微影層找到高品質的多重微影佈局分解。在每個實驗測資都花費合理的運行時間,且線長僅增加微小的數量。


    In this thesis, we study a multiple-layer multiple-patterning aware placement legalization problem for designs with multiple-row height standard cells. Such a problem is necessary to be addressed especially when performing timing optimization on a legal placement with a known layout decomposition for each multiple-patterning layer, because the inserted buffers and resized cells may cause cell overlapping and their layout is not decomposed yet for each multiple-patterning layer.
    We propose a methodology to solve the addressed placement legalization problem by making the placement become legal and each multiple-patterning layer has as few coloring conflicts as possible.
    Experimental results show that our methodology can simultaneously legalize the given placement and find a high-quality layout decomposition for each multiple-patterning layer with reasonable run time for each test case while the wirelength only increases a very small amount.

    1 Introduction 1 2 Problem Formulation 6 3 Our Methodology 9 3.1 Changed Cell Collection 9 3.2 Optimal Region Computation 10 3.3 White Space Selection 11 3.4 Cell Insertion 11 3.5 Local Confict Graph Construction 12 3.6 Graph Coloring 13 4 Experimental Results 15 4.1 Cell Construction 15 4.2 Testbench Construction 16 4.3 Results 16 5 Conclusion 19

    [1] H.-Y. Chang and I. H.-R. Jiang, “Multiple patterning layout decomposition considering complex coloring rules,” in Proceedings of DAC, 2016.

    [2] H.-A. Chien, S.-Y. Han, Y.-H. Chen, and T.-C. Wang, “A cell-based row-structure layout decomposer for triple patterning lithography,” in Proceedings of ISPD, pp. 67–74, 2015.

    [3] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decomposition algorithm for triple patterning lithography,” TCAD, vol. 33, no. 3, pp. 397–408, 2014.

    [4] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition for double patterning lithography,” in Proceedings of ICCAD, pp. 465–472, 2008.

    [5] J. Kuang and E. F. Y. Young, “An efficient layout decomposition approach for triple patterning lithography,” in Proceedings of DAC, 2013.

    [6] X. Tang and M. Cho, “Optimal layout decomposition for double patterning technology,” in Proceedings of ICCAD, pp. 9–13, 2011.

    [7] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. D. Wong, “A polynomial time triple patterning algorithm for cell based row-structure layout,” in Proceedings of ICCAD, pp. 57–64, 2012.

    [8] Y. Xu and C. Chu, “A matching based decomposer for double patterning lithography,” in Proceedings of ISPD, pp. 121–126, 2010.

    [9] J.-S. Yang, K. Lu, M. Cho, K. Yuan, and D. Z. Pan, “A new graph-theoretic, multi-objective layout decomposition framework for double patterning lithography,” in Proceedings of ASP-DAC, pp. 18–21, 2010.

    [10] B. Yu and D. Z. Pan, “Layout decomposition for quadruple patterning lithography and beyond,” in Proceedings of DAC, 2014.

    [11] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for triple patterning lithography,” TCAD, vol. 34, no. 3, pp. 433–446, 2015.

    [12] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decomposition for triple patterning lithography,” in Proceedings ICCAD, pp. 1–8, 2011.

    [13] K. Yuan, J.-S. Yang, and D. Z. Pan, “Double patterning layout decomposition for simultaneous conflict and stitch minimization,” TCAD, vol. 29, no. 2, pp. 185–196, 2010.

    [14] Y. Zhang, W.-S. Luk, H. Zhou, C. Yan, and X. Zeng, “Layout decomposition with pairwise coloring for multiple patterning lithography,” in Proceedings of ICCAD, pp. 170–177, 2011.

    [15] B. Cline, X. Xu, G. M. Yeric, B. Yu, and D. Z. Pan, “Systematic framework for evaluating standard cell middle-of-line robustness for multiple patterning lithography,” Journal of Micro/Nanolithography, Mems, and Moems, vol. 15, pp. 942707–1–942707–14, 2016.

    [16] Y. Lin, B. Yu, B. Xu, and D. Z. Pan, “Triple patterning aware detailed placement toward zero cross-row middle-of-line conflict,” in Proceedings of ICCAD, pp. 396–403, 2015.

    [17] Nangeate 15nm library. http://www.nangate.com.

    [18] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park, and J.-D. Cho, “Ultra-high density standard cell library using multi-height cell structure,” in Proceedings of SPIE, vol. 7268, pp. 72680C–1–72680C–8, 2008.

    [19] W.-K. Chow, C.-W. Pui, and E. F. Y. Young, “Legalization algorithm for multiple-row height standard cell design,” in Proceedings of DAC, 2016.

    [20] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert, and D. Z. Pan, “Mrdp: Multiple-row detailed placement of heterogeneous-sized cells for advanced nodes,” in Proceedings of ICCAD, 2016.

    [21] C.-H. Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo, W. Zhu, and G. Fan, “An effective legalization algorithm for mixed-cell-height standard cells,” in Proceedings of ASP-DAC, pp. 450–455, 2017.

    [22] G. Wu and C. Chu, “Detailed placement algorithm for vlsi design with double-row height standard cells,” TCAD, vol. 35, no. 9, pp. 1569–1573, 2015.

    [23] B.-Y. Chen, “Multi-patterning aware detailed placement refinement for designs with multi-row height cells,” Master Thesis, National Tsing Hua University, 2017.

    [24] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed placement algorithm,” in Proceedings of ICCAD, pp. 45–58, 2005.

    [25] P.-Y. Hsu and Y.-W. Chang, “Non-stitch triple patterning-aware routing based on conflict graph pre-coloring,” in Proceedings of ASP-DAC, pp. 390–395, 2015.

    [26] L. Liebmann, “Keynote speech: The escalating design impact of resolution-challenged lithography,” in Proceedings of ICCAD, 2013.

    [27] D. E. Knuth, “Dancing links.” Available at: arXiv:cs/0011047, 2000. [28] Synopsys Design Compiler. http://www.synopsys.com.

    [29] OpenCores designs. http://opencores.org.

    [30] Cadence Soc Encounter. http://www.cadence.com.

    QR CODE