研究生: |
陳忠琨 Chen, Chung-Kun |
---|---|
論文名稱: |
都卜勒擴散環境中利用基於奇異值分解預編碼技術之正交分頻多工系統流通量最大化研究 SVD-Based Precoding for Throughput Maximization in OFDM Systems over Doppler Spread Environments |
指導教授: |
蔡育仁
Tsai, Yuh-Ren |
口試委員: |
黃政吉
Huang, Jeng-Ji 梁耀仁 Liang, Yao-Jen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 正交分頻多工 、都卜勒擴展 、載波間際干擾 |
外文關鍵詞: | OFDM, Doppler Spread, ICI |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近幾年,正交分頻多工這項技術被廣泛地使用在很多通訊應用和標準。當基地台與使用者之間有相對運動,都卜勒效應就會產生、並且子載波之間會互相干擾。為了觀察都卜勒偏移所造成的影響,將反離散傅立葉轉換程序到離散傅立葉轉換程序之間的過程視為一個頻域通道,並以此頻域通道來觀察都卜勒效應的影響。 在本文中,我們希望使用預編碼器與組合器來避免掉傳送訊號時遇到子載波間干擾的問題。將頻域通道進行奇異值分解,就可以得到一組最佳的預編碼器與組合器。從預編碼器到組合器的過程可以視為一個等效通道,此等效通道是由數個互相平行的子通道所構成。資料符號會被分配到這些子通道上而非子載波上。此外,在利用奇異值分解的正交分頻多工系統方法中,藉由利用注水填充演算法來分配傳送功率並接著執行位元數分配程序,此系統可以達到輸出位元最大化的目的。模擬結果顯示,不管是位元錯誤率還是位元傳輸速率,奇異值分解的正交分頻多工系統比起傳統的方法皆具有優勢,特別是在較大都卜勒效應的環境。此外,在通道估測結果不完美的情況,奇異值分解的正交分頻多工系統也能有較好的效能。
In recent years, orthogonal frequency-division multiplexing (OFDM) is adopted widely in many communication applications and standards. The relative motion between the base station and user will occur Doppler effect and cause inter-carrier interference. To observe the effect of the Doppler shift, the frequency-domain channel from IDFT to DFT will be considered. In our work, the precoder and combiner will be added to the OFDM system to avoid inter-carrier interference. Decomposing the frequency-domain channel by Singular Value Decomposition (SVD), the optimal precoder and combiner can be obtained. The process from precoder to combiner can be considered an equivalent channel which is comprised of parallel subchannels. Data symbols will be loaded on parallel subchannels rather than subcarriers. Moreover, the SVD OFDM system adopts the water-filling power allocation and bit-loading process to achieve the goal of throughput maximization. Simulation results show that the SVD OFDM system has the advantage of BER and throughput performance, especially in a large Doppler effect environment. In addition, it also has better performance when channel estimation is imperfect.
[1] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA, USA: Artech House, 2000.
[2] European Telecommunications Standards Institute, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” European Telecommunications Standards Institute, ETSI-EN-300 744, 1.4.1 ed., 2000.
[3] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX, 2nd Edition, JohnWiley & Sons, 2008.
[4] H. Wu and J. Li, ‘‘Analysis and mitigation of ICI due to gain adjustment in OFDM systems,’’ IEEE Access, vol. 7, pp. 21807–21815, 2019.
[5] M. Yang, Y. Chen, and L. Du, ‘‘Interference analysis and filter parameters optimization for uplink asynchronous F-OFDM systems,’’ IEEE Access, vol. 7, pp. 48356–48370, 2019.
[6] T. Cooklev, H. Dogan, R. J. Cintra, and H. Yildiz, ‘‘A generalized prefix construction for OFDM systems over quasi-static channels,’’ IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3684–3693, Oct., 2011.
[7] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressed channel sensing: A new approach to estimating sparse multipath channels,” Proc. IEEE, vol. 98, no. 6, pp. 1058–1076, Jun., 2010.
[8] X. Ren, M. Tao, and W. Chen, “Compressed channel estimation with position-based ICI elimination for high-mobility SIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6204–6216, Aug., 2016.
[9] A. F. Molisch, M. Toeltsch and S. Vermani, "Iterative methods for cancellation of intercarrier interference in OFDM systems," IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 2158-2167, Jul., 2007.
[10] N. Aboutorab, W. Hardjawana, and B. Vucetic, ‘‘A new iterative Doppler-assisted channel estimation joint with parallel ICI cancellation for high-mobility MIMO-OFDM systems,’’ IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1577–1589, May., 2012.
[11] Z. Hong, L. Zhang, and L. Thibault, “Iterative ICI cancellation for OFDM receiver with residual carrier frequency offset,” in Proc. IEEE Veh. Technol. Conf., pp. 1–5, Sep., 2011.
[12] T. Pham, T. Le-Ngoc, G. K. Woodward, and P. A. Martin, ‘‘Channel estimation and data detection for insufficient cyclic prefix MIMO-OFDM,’’ IEEE Trans. Veh. Technol, vol. 66, no. 6, pp. 4756–4768, Jun., 2017.
[13] C.-Y. Hsu and W.-R. Wu, ‘‘Low-complexity ICI mitigation methods for high-mobility SISO/MIMO-OFDM systems,’’ IEEE Trans. Veh. Technol., vol. 58, no. 6, pp. 2755–2768, Jul., 2009.
[14] Y.-S. Choi, P. J. Voltz, and F. A. Cassara, ‘‘On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels,’’ IEEE Trans. Commun., vol. 49, no. 8, pp. 1375–1387, Aug., 2001.
[15] X. Liu, H.-H. Chen, S. Chen, and W. Meng, ‘‘Symbol cyclic-shift equalization algorithm—A CP-free OFDM/OFDMA system design,’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 282–294, Jan., 2017.
[16] L. Samara, A. O. Alabassi, R. Hamila, and N. Al-Dhahir ‘‘Sparse equalizers for OFDM signals with insufficient cyclic prefix,’’ IEEE Access, vol. 6, pp. 11076–11085, 2018.
[17] Z. Tang, R. C. Cannizzaro, G. Leus, and P. Banelli, “Pilot-assisted time-varying channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2226–2238, May 2007.
[18] D. P. Palomar and J. R. Fonollosa, "Practical algorithms for a family of water-filling solutions," IEEE Trans. Signal Process., vol. 53, no. 2, pp. 686-695, Feb., 2005.
[19] A. Sultana, L. Zhao and X. Fernando, "Efficient resource allocation in device-to-device communication using cognitive radio technology," IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10024-10034, Nov., 2017.
[20] T. N. Vo, K. Amis, T. Chonavel and P. Siohan, "A computationally efficient discrete bit–loading algorithm for OFDM systems subject to spectral–compatibility limits," IEEE Trans. Commun., vol. 63, no. 6, pp. 2261-2272, Jun., 2015.
[21] D. Hughes-Hartogs, ‘‘Ensemble modem structure for imperfect transmission media,’’ Technical report, U.S Patent, no. 4,833,706, May., 1989.
[22] M. A. Tunc, E. Perrins and L. Lampe, "Optimal LPTV-aware bit loading in broadband PLC," IEEE Trans. Commun., vol. 61, no. 12, pp. 5152-5162, Dec., 2013.
[23] C. Kaiser, N. Mitschke and K. Dostert, "Cyclic bit loading for adaptive OFDM in narrowband power line communications," Proc. IEEE Int. Symp. Power Line Commun. Appl. (ISPLC), pp. 1-6, Apr., 2018.
[24] M. Wang, W. Xiao and T. Brown, "Soft decision metric generation for QAM with channel estimation error," IEEE Trans. Commun., vol. 50, no. 7, pp. 1058-1061, Jul., 2002.
[25] S. S. Ikki and S. Aissa, "Impact of imperfect channel estimation and co-channel interference on dual-hop relaying systems," IEEE Commun. Lett., vol. 16, no. 3, pp. 324-327, Mar., 2012.
[26] C. Yang, Y. Liu, M. Chen and H. Ma, "Compressive channel estimation using band approximation for OFDM systems," 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI), pp. 14-18, 2016.
[27] K. Fang, L. Rugini and G. Leus, "Low-complexity block turbo equalization for OFDM systems in time-varying channels," IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5555-5566, Nov., 2008.
[28] A. A. A. Solyman et al., “A low-complexity equalizer for video broadcasting in cyber-physical social systems through handheld mobile devices,” IEEE Access, vol. 8, pp. 67591–67602, 2020.