簡易檢索 / 詳目顯示

研究生: 侯芪焜
Chi-Kuen Ho
論文名稱: 低功率標準元件庫研發
A Low Power Standard Cell Library Development
指導教授: 馬席彬
Hsi-Pin Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 146
中文關鍵詞: 電源供應電壓臨限電壓次臨限電流功率消耗多重臨限電壓互補式金氧半場效電晶體標準元件庫疊接
外文關鍵詞: power supply voltage, threshold voltage, sub-threshold current, power consumption, multi-threshold CMOS, standard cell library, stack
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 縮小面積、降低電源供應電壓(power supply voltage)以及減小電晶體的臨限電壓(threshold voltage)是製程技術演進上的趨勢,然而,它同時也令次臨限電流(sub-threshold current)在總體功率消耗(power consumption)上的比例大大的提高。多重臨限電壓互補式金氧半場效電晶體(multi-threshold CMOS)是近年來越來越受重視的一種低功率技術,它能夠有效的減少低臨限電壓所帶來的次臨限電流,並且保有電路原有的效能。
      在本論文裡,我將MTCMOS技術完整的應用到標準元件庫(standard cell library)的設計中,並且引入了疊接(stack)電晶體的概念來強化MTCMOS其改善次臨限電流的能力。標準元件庫在數位電路設計的領域中極其重要,它普遍被應用在Cell-Based Design中,電路設計者能夠藉由Cell-Based Design Flow,快速的利用元件庫中的元件來完成他們的設計,因此,元件庫的特性的優劣會直接的影響到電路性能的好壞。我以MTCMOS技術分別針對TSMC 0.18μm以及UMC 0.18μm兩種製程設計了兩套標準元件庫,並實際以Cell-Based Design Flow實現了兩組測試電路,經過模擬的驗證,都顯示出其我所提出的標準元件庫能有效的降低功率的消耗,特別是對於改善次臨限電流,更是成效卓著。


    Scaling down, power reduction and reducing threshold voltage of transistors are the future trends of process development. However, it also causes sub-threshold leakage current to become an increasingly large component of total power dissipation. Recently, multi-threshold voltage CMOS technology already has attracted more and more attention for its low power capacity. The technology can reduce efficiently the sub-threshold leakage current which low threshold voltage results in. Besides, it still can retain the original circuit performance without too large overhead.
    In this thesis, I apply MTCMOS technology to standard cell library design, besides, I inject stack transistors concept to enforce MTCMOS capacity of reducing sub-threshold leakage current. Standard cell library plays a really important role in digital circuit design; it is utilized universally for Cell-Based Design. A circuit designer can quickly use these elements of standard cell library to realize their design through Cell-Based Design flow. Therefore, the good or bad of cell library will directly affect the feature of designed circuits. Based on MTCMOS technology, I proposed two sets of standard cell libraries what they are used for TSMC 0.18μm and UMC 0.18μm process separately. By Cell-Based Design flow, I implemented two different test circuits with them. And through SPICE simulation, the results both proved that our standard cell libraries can lower efficiently power dissipation, especially for the improvement of sub-threshold leakage current.

    1. Introduction and Background 1 1.1 Introduction……………………………………………………………………1 1.2 Static Leakage Current………………………………………………………...3 1.2.1 Leakage Current Categories……………………………………………..3 1.2.2 Sub-threshold Leakage…………………………………………………..5 1.3 Multi-threshold CMOS Technology…………………………………………...7 1.3.1 Principle…………………………………………………………………7 1.3.2 Improvement…………………………………………………………….9 1.4 Organization of Thesis……………….…….…………………………………11 2. CMOS Leakage Characterization 13 2.1 Leakage models………………………………………………………………13 2.2 Sub-threshold Current versus Threshold Voltage…………………………….14 2.3 Sub-threshold Current versus Temperature……….…………………………15 2.4 VGS and VDS Affection…….….…………………………….……………….16 2.5 Device Size Affection…..…..………………………………………………17 3. MTCMOS Standard Cell Library Development 21 3.1 Standard Cell Library Development………………………………………..21 3.1.1 Design Flow…………………………………………………………..21 3.1.2 Contents in the Standard Cell Library…………………………………22 3.2 Cell Characterization and Model Establishment……………………………25 3.2.1 Introduction of Cell Characteristics Extraction and Model Establishment Flow……………………………………………………25 3.2.2 Kinds of Characteristics and Extraction Theorem……………………..26 3.3 Concept of MTCMOS Standard Cell Library……………………………….27 3.4 Specification and Description of Standard Cell Library…………………….29 3.4.1 UMC 0.18μm Process………………………………………………….29 3.4.2 TSMC 0.18μm Process…………………………………………………30 3.5 Standard Cell Library Design Rules………………………………………….31 3.6 Sequential Circuits of MTCMOS…………………………………………….35 3.6.1 Design of Sequential Circuits…………………………………………..35 3.6.2 D Flip-Flop Circuit for MTCMOS Standard Cell Library……………..34 4. Cell-Based Design Preparation 41 4.1 Cell-Based Design Flow…….………………………………………………41 4.2 Synthesis……………………………………………………………………..43 4.2.1 Compiling Library……..……………………………………………….43 4.2.2 Modifying Verilog Code………………………………………………44 4.3 Automatic Placement and Routing…………………………………………..48 5. Test Circuit 51 5.1 TSMC 0.18μm Process……………………………………………………….51 5.1.1 Introduction to Test Circuit…………………………………………….51 5.1.2 Architecture Design…………………………………………………….52 5.1.3 Implementation of Test Circuit…………………………………………53 5.1.3.1 Floorplan………………………………………………………53 5.1.3.2 Design Testability….…..………………………………………55 5.1.3.3 Simulation Results……………………………………………56 5.2 UMC 0.18μm Process………………………………………………………58 5.2.1 Introduction to Test Circuit………………….…………………………58 5.2.2 Architecture Design…………………………………………………….58 5.2.3 Implementation of Test Circuit…………………………………………62 5.2.3.1 Floorplan………………………………………………………62 5.2.3.2 Simulation Results…….………………………………………63 6. Future Works and Conclusions 67 6.1 Future Works …...……………………………………………………………67 6.2 Conclusions…………………………………………………………………68 Appendix A: Cell Library Information-TSMC 0.18μm 1P6M Process Appendix B: Cell Library Information-UMC 0.18μm 1P6M Process

    [1] H. S. Won, K. S. Kim, K. O. Jeong, K. T. Park, K, M, Choi and J. T. Kong, “An MTCMOS Design Methodology and Its Application to Mobile Computing,” ISLPED, pp. 110-115, August 2003.
    [2] N. S. Kim, T. A. David and B. T. Mudge, “Leakage Current: Moore’s Law Meets Static Power,” IEEE Computer Society, pp.68-75, Dec. 2003.
    [3] G.oichi Ono and Masayuki, “Threshold-Voltage Balance for Minimum Supply Operation,” IEEE Journal of Solid-State Circuits, Vol. 38, pp.68-75, May. 2003.
    [4] S. Mutoh, T. Douseki, Y. Matsuya, S. Shigematsu and J. Yamada, “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold –Voltage CMOS,” IEEE Journal of Solid-State Circuits, Vol. 30, pp.847-853, August 1995.
    [5] A. Amirabadi, J. Jafari, A. A. Kusha, A. K. Firooz and M. Nourani, “Leakage Current Reduction by New Technique in Standby Mode,” GLSVLSI, pp.158-161, April 2004.
    [6] Y. Taur and T.H. Ning. Fundamentals of Modern VLSI Devices, Cambridge University press, 1998.
    [7] http://www-device.eecs.berkeley.edu/~bsim3/latenews.html
    [8] R. M. Rao, J. L. Burns, A. Devgan and R. B. Brown, “Efficient Techniques for Gate Leakage Estimation,” ISLPED, pp. 100-103, August 2003.
    [9] James T. Kao and Anantha P. Chandrakasan, “Dual-Threshold Voltage Techniques for Low-Power Digtial Circuit,” IEEE Journal of Solid-State Circuits, Vol. 35, pp.1009 -1018, July 2000.
    [10] K. Nii, H. Makino, Y. Tujihashi, C. Morishima, Y. Hayakawa, H. Nunogami, T. Arakawa and H. Hamano, “A Low Power SRAM using Auto-Backgate-Controlled MT-CMOS,” ISLPED, pp.293-298, 1998.
    [11] H. Makino, Y. Tsujihashi, K. Nii, C. Morishima, Y. Hayakawa, T. Shimizu and T. Arakawa, “An Auto-Backgate-Controlled MT-CMOS Circuit,” IEEE VLSI circuits Digeset of Technical Papers, pp.42-43, June 1998.
    [12] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe and J. Yamada, “A 1-V High-Speed MTCMOS Circuit Scheme for Power-Down Application Circuits,” IEEE Journal of Solid-State Circuits, Vol. 32, pp.861-869, June 1997.
    [13] R. M. Rao, J. L. Burns and R. B, Brown, “Analysis and Optimization of Enhanced MTCMOS Scheme,” IEEE Proc., pp.861-869, June 1997.
    [14] C. C. Wang, P. M. Lee and K. L. Chen, “An SRAM Design Using Dual Threshold Voltage Transistors and Low-Power Quenchers,” IEEE Journal of Solid-State Circuits, Vol. 38, pp.1712-1720, Oct. 2003.
    [15] 工研院/系統晶片技術中心 郭建興, “標準元件庫特徵值萃取與模型建立,” IC Design magazine, Vol. 33, pp. 44-56, Jan. 2003.
    [16] 國家晶片系統設計中心 陳麒旭, “標準元件庫(Standard Cell Library)概說,” IC Design magazine, pp. 28-36, Oct. 2003.
    [17] Artisan (2003 September). TSMC 0.18mm Process 1.8-Volt SAGE-XTM Standard Cell Library Databook. Artisan Components, Inc.
    [18] Avant!. (1998, July). Milkyway Cell Library Preparation Training Guide, Avant! Corporation.
    [19] Christopher Saint and Judy Saint. (2003). IC Mask Design, Vol. 2, pp. 25-48.
    [20] L. Jia, Y. Gao and H. Tenhunen, “Efficient VLSI Implementation for Radix-8 FFT Algorithm,” IEEE Communications, Computers and Signal Processing, pp. 468-471, Aug. 1999.
    [21] J. Kao, S. Narendra and A. Chandrakasan, “MTCMOS Hierarchical Sizing Based on Mutual Exclusive Discharge patterns,” Proceedings of the 35th annual conference on Design automation, pp. 495-500, 1998.
    [22] M. H. Anis, M. K. Mahmoud and M. I. Elmasry, “Efficient Gate Clustering for MTCMOS Circuits,” IEEE Journal of Solid-State Circuits, Vol. 38, pp.1712-1720, Oct. 2003.
    [23] W. Liao, J. M. Basile and L. He, “Leakage Power Modeling and Reduction with Data Retention,” Proceedings of the IEEE, pp. 34-38, Sept. 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE