研究生: |
黃蘊慈 Huang, Yun-Tzu |
---|---|
論文名稱: |
利用單分子螢光共振能量轉移技術量測雙元體質子傳送-焦磷酸水解酶酵素活性區之距離變化 Distance Variations between Active Sites of H+-pyrophosphatase Determined by Single Molecule Fluorescence Resonance Energy Transfer |
指導教授: |
潘榮隆
Pan, Rong-Long |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 質子傳送-焦磷酸水解酶 、單分子螢光共振能量轉移技術 、全內反射式螢光顯尾勁 、金奈米粒子 、原子力顯微鏡 |
外文關鍵詞: | H+-translocating inorganic pyrophosphatase, Single molecule fluorescence resonance energy transfer, Total internal reflection fluorescence microscope, Gold nanoparticle, Atomic force microscope |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子傳送-焦磷酸水解酶(簡稱H+-PPase; EC 3.6.1.1)是維持生物體內pH恆定的重要酵素。這個獨特的質子傳送酶藉由水解生物次級代謝產物-焦磷酸產生能量以驅動質子傳送,來維持細胞膜內外的酸鹼平衡。已知此酵素的焦磷酸水解功能單位為單元體,而質子傳送功能單位為同雙元體,其每個單體的酵素活化中心均由位在第五環圈的焦磷酸結合區段與第一酸性區段,以及位在第十五環圈的第二酸性區段和數個基要胺基酸所構成。本實驗即利用單分子螢光共振能量轉移技術,量測這些重要區段及胺基酸之間的分子間距離,並觀察此酵素與受質類似物及離子結合時所發生的之距離變化。其中位在同雙元體上兩個羧酸端的距離為49.3 ± 4.0 Å,而兩個胺基端之間的距離為67.2 ± 5.7 Å。雖然兩個焦磷酸結合區段的距離相對遙遠(70.8 ± 4.8 Å),但是當質子傳送-焦磷酸水解酶與鉀離子及焦磷酸類似物結合後,兩個焦磷酸結合區段會變得更靠近彼此(56.6 ± 4.1 Å)。此外當酵素與受質類似物結合時亦會引起同雙元體上兩個第一酸性區段及兩個H622胺基酸的距離發生重要的改變,然而此現象在鉀離子與質子傳送-焦磷酸水解酶結合時並未發生。因此,本研究在同雙元體質子傳送-焦磷酸水解酶的基要區段、重要胺基酸以及酵素活性區段之間的距離量測上提供了重要的結構意義,並且提出一個酵素與受質結合機制的模式。
Homodimeric H+-pyrophosphatase (H+-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel enzyme supplies energy at expense of hydrolyzing metabolic byproduct, pyrophosphate (PPi), for H+ translocation across membrane. The functional unit of a monomer suffices for enzymatic reaction of H+-PPase, while that for the translocation is homodimer. Its active site on each subunit consists of PPi binding motif, Acidic I and II motifs, and several essential residues. In this investigation, structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H+-PPase are 49.3 ± 4.0 Å and 67.2 ± 5.7 Å, respectively. Furthermore, putative PPi binding motifs on individual subunits are found to be relatively far away from each other (70.8 ± 4.8 Å), while binding of potassium and substrate analogue led them to closer proximity (56.6 ± 4.1 Å). Moreover, substrate analogue but not potassium elicits significantly distance variations between two Acidic I motifs and two H622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues and putative active sites on homodimeric subunits of H+-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H+-PPase upon substrate binding.
Baltcheffsky M, Schultz A, Baltscheffsky H (1999) H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett 452: 121-127
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248-254
Clerc S, Barenholz Y (1998) A quantitative model for using acridine orange as a transmembrane pH gradient probe. Anal Biochem 259: 104-111
Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci 17: 262-266
Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes: the orientation factor in intramolecular energy transfer. Biophys J 26: 161-194
Drozdowicz YM, Rea PA (2001) Vacuolar proton pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6: 206-211
Edstrom RD, Meinke MH, Yang R, Yang X, Elings V, Evans DF (1990) Direct visualization of phosphorylase–phosphorylase kinase complexes by scanning tunneling and atomic force microscopy. Biophys J 58: 1437–1448
Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Der Physik 2: 55-75
Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204-2214
Ginsburg H (2002) Abundant proton pumping in Plasmodium falciparum, but why? Trends Parasitol 18: 483-486
Gordon-Weeks R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiol 111: 195-202
Granier S, Kim S, Shafer AM, Ratnala VRP, Fung JJ, Zare RN, Kobilka B (2007) Structure and conformational changes in the C-terminal domain of the β2-adrenoceptor. J Biol Chem 282: 13895-13905
Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Nat Acad Sci USA 93: 6264-6268
Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1608: 190-199
Hsu SH, Hsiao YY, Liu PF, Lin SM, Luo YY, Pan RL (2009) Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-yrophosphatase expressed in yeast. Bot Stud 50: 291-301
Ishii Y, Yoshida T, Funatsu T, Aizawa, K, Yanagida T (1999) Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem Phys 247: 163-173
Kim EJ, Zhen RG, Rea PA (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270: 2630-2635
Kirsch RD, Joly E (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res 26: 1848-1850
Lee NK, Kaparnidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88: 2939-2953
Lidke KA, Rieger B, Lidke DS, Jovin TM (2005) The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Processing 14: 1237-1245
Lin HH, Pan YJ, Hsu SH, Van RC, Hsiao YY, Chen JH, Pan RL (2005) Deletion mutation analysis on C-terminal domain of plant vacuolar H+-pyrophosphatase. Arch Biochem Biophys 442: 206-213
Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL (2009) The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J 276: 4381-4394
López-Marqués RL, Pérez-Castiñeira J, Buch-Pedersen MJ, Marco S, Rigaud JL, Palmgren MG, Serrano A (2005) Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritina: a ‘Hot-Solve’ method for isolation of recombinant thermophilic membrane proteins. Biochim Biophys Acta 1716: 69-76
Luo Y, Wu JL, Gergely J, Tao T (1997) Troponin T and Ca2+ dependence of the distance between Cys48 and Cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments. Biochemistry 36: 11027-11035
Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196: 11-17
Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465: 37-51
Maeshima M (2001) Tonoplast transporters: Organization and function. Annu Rev Plant Physiol Plant Mol Biol 52: 469-497
Mann TL, Krull UJ (2003) Polarization spectroscopy in protein analysis. Analyst 128: 313-317
Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279: 35106-35112
Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276: 7654-7660
Pohjanjoki P, Lahti R, Goldman A, Cooperman BS (1998) Evolutionary Conservation of Enzymatic Catalysis: Quantitative Comparison of the Effects of Mutation of Aligned Residues in Saccharomyces cerevisiae and Escherichia coli Inorganic Pyrophosphatases on Enzymatic Activity. Biochemistry 37: 1754-1761
Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17: 348-353
Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5: 507-516
Saliba KJ, Allen RJ, Zissis S, Bray PG, Ward SA, Kirk K (2003) Acidification of the malaria parasite's digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J Biol Chem 278: 5605-5612
Sarafian V, Potier M, Poole RJ (1992) Radiation inactivation analysis of vacuolar H+-ATPase and H+-pyrophosphatase from Beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport. Biochem J 283: 493-497
Sato MH, Kasahara M, Ishii N, Homareda H, Matsuih, Yoshida M (1994) Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem 269: 6725-6758
Schneider S, Folprecht G, Krohne G, Oberleithner H (1995) Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. Pflügers Arch 430: 795-801
Tomishige M, Stuurman N, Vale RD (2006) Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 13: 887-894
Tzeng CM, Yang CY, Yang SJ, Jiang SS, Kuo SY, Hung SS, Ma JT, Pan RL (1996) Subunit structure of vacuolar proton pyrophosphatase as determined by radiation inactivation. Biochem J 316: 143-147
Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7: 724-729
Wu SA, Lokanath NK, Kim DY, Park HJ, Hwang HY, Kim ST, Suh SW, Kim KK (2005) Structure of inorganic pyrophosphatase from Helicobacter pylori. Acta Cryst 61: 1459-1464
Yang SJ, Ko SJ, Tsai YR, Jiang SS, Kuo SY, Hung SH, Pan RL (1998) Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure. Biochem J 331: 395-402
Yang SJ, Jiang SS, Hsiao YY, Van RC, Pan YJ, Pan RL (2004) Thermoinactivation analysis of vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1656: 88-95
Zhen R, Kim EJ, Rea PA (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269: 23342-23350