簡易檢索 / 詳目顯示

研究生: 楊峻崴
Yang, Chun-Wei
論文名稱: 具積分器之離散型全程擬滑動模式控制於非線性四軸旋翼機系統之應用
Application of Discrete Global Quasi-Sliding Mode Control with Integrator to a Nonlinear Quadcopter System
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員: 葉廷仁
林明璋
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 129
中文關鍵詞: 四軸旋翼機欠驅動系統全程擬滑動模式控制穩態誤差ARW積分器
外文關鍵詞: quadcopter, underactuated system, global quasi-sliding mode control, steady-state error, ARW integrator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨在於藉由滑動模式控制的強健特性,將四軸旋翼機發展為一個強健且靈敏的應用平台。對於非線性欠驅動的四軸旋翼機系統,在串聯軸向子系統與轉向子系統的控制結構下,已經有許多前人在滑動模式控制的應用做出貢獻。但是這些滑動模式控制法不是設計在連續時間上就是在迫近階段有強健性不足的問題。對此,一種針對線性系統的離散型全程擬滑動模式控制法激勵了本文將其應用到非線性欠驅動的四軸旋翼機系統上。首先,本文改寫了四軸旋翼機的系統動態模型以提出串接無驅動子系統到全驅動子系統的串級控制架構。接著,本文提出了一種針對非線性系統的具積分器之離散型全程擬滑動模式控制法,其包含強制函數、Gao型離散迫近律、廣義飽和函數與積分控制項。強制函數用於改善迫近階段的強健性不足;Gao型離散迫近律用於確保擬滑動模式存在並收斂;廣義飽和函數用於取代傳統切換函數以降低切換控制項造成的顫震;積分控制項用於降低飽和函數與結構不確定性造成的系統誤差。最後,本文將四軸旋翼機用於室內環境的即時定位與地圖構建,證明本文的控制法能夠將四軸旋翼機發展為一個強健且靈敏的應用平台。


    The main purpose of this thesis is to develop a robust and agile quadcopter control system by applying the sliding mode control scheme. A lot of research had applied sliding mode control schemes to quadcopter system, which was underactuated and nonlinear, with a control structure that connected a rotational subsystem to a translational subsystem. However, those sliding mode control schemes were either designed for a continuous-time system or suffered a robustness reduction problem during the reaching phase. Here a discrete global quasi-sliding mode control scheme for a linear system was proposed to solve the problem, and this thesis had been motivated to make it feasible for a nonlinear underactuated quadcopter system. Therefore, we first proposed a cascaded control structure for the underactuated quadcopter system by simply rewrote the dynamics model of a quadcopter to a form that cascaded a non-actuated subsystem to a fully-actuated subsystem. Then, we proposed a new design method of discrete global quasi-sliding mode control for the nonlinear system, which was designed to consist of forcing function, Gao’s reaching law, generalized smooth saturation function and integral control term as well. The forcing function was adopted to alleviate the robustness reduction problem of the reaching phase. Gao’s reaching law was adopted to guarantee the existence and finite-time convergence of quasi-sliding mode. The generalized smooth saturation function, which substituted for conventional switching function, was adopted to reduce the chattering phenomenon caused by switching control term. The integral control term was adopted to reduce the steady-state error caused by saturation function and structure uncertainty. Finally, a quadcopter was applied to doing an indoor simultaneous localization and mapping to prove the performance of the control scheme proposed by this thesis.

    摘要 A ABSTRACT B 誌謝 D 目錄 I 圖目錄 III 表目錄 VIII 第1章 緒論 1 1.1 研究動機與目標 1 1.2 文獻回顧 2 1.2.1 四軸旋翼機 2 1.2.2 滑動模式控制 3 1.3 本文架構 5 第2章 系統動態模型與控制架構 7 2.1 系統動態模型(SYSTEM DYNAMICS MODEL) 7 2.1.1 參考座標 7 2.1.2 運動模型(kinematics model) 8 2.1.3 動態模型(dynamics model) 10 2.1.4 力與力矩(Force and Moment) 12 2.1.5 系統動態模型(System dynamics model) 17 2.2 問題描述 19 2.3 串級控制架構(CASCADE CONTROL STRUCTURE) 20 2.4 非線性系統離散化 24 2.4.1 Taylor method 24 2.4.2 非線性二階動態系統離散化 25 2.5 小結 26 第3章 典型全程滑動模式控制 27 3.1 連續型全程滑動模式控制 28 3.1.1 滑動函數 28 3.1.2 滑動模式控制的穩定條件與迫近律 30 3.1.3 滑動模式控制律的設計方法 33 3.2 廣義飽和函數 39 3.3 離散型全程擬滑動模式控制 41 3.3.1 滑動函數 42 3.3.2 擬滑動模式控制的穩定條件與迫近律 43 3.3.3 擬滑動模式控制律在線性系統的設計方法[27][37] 47 3.4 理想邊界層寬度 50 3.5 小結 52 第4章 非線性離散型全程擬滑動模式控制 53 4.1 問題描述 53 4.2 誤差消除器-ARW積分控制項設計 54 4.3 非線性離散型全程擬滑動模式控制 57 4.3.1 非線性離散型全程擬滑動模式控制的設計方法 58 4.3.2 具積分器之非線性離散型全程擬滑動模式控制的設計方法 66 4.4 邊界層寬度設計 70 4.5 小結 71 第5章 實驗驗證 72 5.1 實驗硬體 72 5.1.1 實驗設備 72 5.1.2 實驗架構 77 5.2 控制器參數 81 5.3 實驗一:具積分器之離散型全程擬滑動模式控制實驗 82 5.3.1 PID控制法之問題 83 5.3.2 離散型擬滑動模式控制法之比較 87 5.3.3 離散型全程擬滑動模式控制法 91 5.3.4 具積分器之離散型全程擬滑動模式控制法 95 5.3.5 實驗一小結 102 5.4 實驗二:四軸旋翼機之飛行實驗 104 5.5 實驗三:四軸旋翼機之室內定點飛行實驗 116 5.6 小結 122 第6章 論文總結與未來發展 124 6.1 總結 124 6.2 未來發展 125 參考文獻 127

    [1] L. Breguet, "Breguet-Richet Gyroplane", En.wikipedia.org. [Online]. Available: https://en.wikipedia.org/wiki/Breguet-Richet_Gyroplane. [Accessed: 15- Oct- 2018].
    [2] E. Altug, J. Ostrowski, and R. Mahony, “Control of a quadrotor helicopter using visual feedback,” Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp. 72–77, May 2002.
    [3] T. Hamel, R. Mahony, R. Lozano and J. Ostrowski, "Dynamic Modelling and Configuration Stabilization for an X4-Flyer.", IFAC Proceedings Volumes, vol. 35, no. 1, pp. 217-222, 2002.
    [4] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an indoor micro quadrotor,” IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA 04. 2004, pp. 4393–4398, 2004.
    [5] M. Rich, Model development, system identification, and control of a quadrotor helicopter, thesis, Iowa State University Digital Repository, United States., 2012.
    [6] R. Beard and T. McLain, Small unmanned aircraft. Princeton, N.J: Princeton University Press, 2012.
    [7] Ø. Magnussen and K.E. Skjønhaug, Modeling, design and experimental study for a quadcopter system construction, Master's Thesis, University of Agder, Norway., 2011.
    [8] S. Bouabdallah and R. Siegwart, “Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2247–2252, 2005.
    [9] R. Xu and U. Ozguner, “Sliding mode control of a quadrotor helicopter,” 2006 IEEE Conference on Decision and Control, pp. 4957-4962, 2006.
    [10] D. Lee, H. Jin Kim and S. Sastry, "Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter", International Journal of Control, Automation and Systems, vol. 7, no. 3, pp. 419-428, 2009.
    [11] A. Benallegue, A. Mokhtari and L. Fridman, "High-order sliding-mode observer for a quadrotor UAV", International Journal of Robust and Nonlinear Control, vol. 18, no. 4-5, pp. 427-440, 2008.
    [12] E. Altug, J. Ostrowski, and C. Taylor, “Quadrotor control using dual camera visual feedback,” 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), pp. 329–341, May 2005.
    [13] A. Tayebi and S. Mcgilvray, “Attitude stabilization of a four-rotor aerial robot,” 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp. 1216–1221, 2004.
    [14] A. Tayebi and S. Mcgilvray, “Attitude stabilization of a VTOL quadrotor aircraft,” IEEE Transactions on Control Systems Technology, vol. 14, no. 3, pp. 562–571, May 2006.
    [15] G. V. Raffo, M. G. Ortega, and F. R. Rubio, "Backstepping/nonlinear H∞ control for path tracking of a quadrotor unmanned aerial vehicle," 2008 American Control Conference, pp. 3356–3361, 2008.
    [16] G. V. Raffo, M. G. Ortega, and F. R. Rubio, "An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter." Automatica, pp. 29-39, 2010.
    [17] S.V. Emelyanov, Variable Structure Control Systems. Moscow: Nauka (in Russian), 1967.
    [18] V.I. Utkin, “Sliding Mode Control Design Principles and Applications to Electric Drives,” IEEE Transactions on Industrial Electronics, vol. 40, 1993, pp.23-36.
    [19] V.I. Utkin, “Variable structure systems with sliding mode: a survey,” IEEE Transactions Automatic Control, vol. AC-22, no. 2, pp. 212-222, 1977.
    [20] Y. Dote and R. G. Hoft, “Microprocessor based sliding mode controller for dc motor drives,” Proc. of the IEEE/IAS Conf., pp. 641-645, 1990.
    [21] D. Milosavljevic, “General conditions for the existence of a quasisliging mode on the switching hyperplane in discrete variable structure system,” Automat. Remote Contr., vol. 46, pp. 307-314, 1985.
    [22] S. Sarpturk, Y. Istefanopulos and O. Kaynak, “On the Stability of Discrete-Time Sliding Mode Control Systems,” IEEE Transactions on Automatic Control, vol. 32, no. 10, pp. 930-932, 1987.
    [23] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Transactions on Industrial Electronics, Vol. 42 , No. 2, pp.117-122, 1995.
    [24] J.J.E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey, 1991.
    [25] M. Wu and J.S. Chen, “On The Redesign of Continuous Approximation in Sliding Mode Control,” 11th International Conference on Control, Automation and Systems (ICCAS), Korea , pp. 1193-1198, 2011.
    [26] Y.S. Lu and J.S. Chen, “Design of global sliding-mode controller for a motor drive with bounded control.” International Journal of Control, vol. 62, pp. 1001-1019, 1995.
    [27] M. Wu and J.S. Chen, “A Discrete-Time Global Quasi-Sliding Mode Control Scheme with Bounded External Disturbance Rejection,” Asian Journal of Control, vol. 16, no. 6, pp.1839-1848, 2014.
    [28] S. Seshagiri and H. Khalil, “On introducing integral action in sliding mode control,” Proceedings of the 41st IEEE Conference on Decision and Control, 2002., pp. 1473–1478, 2002.
    [29] M. Kothare, P. Campo, M. Morari and C. Nett, "A unified framework for the study of anti-windup designs", Automatica, vol. 30, no. 12, pp. 1869-1883, 1994.
    [30] R. Olfati-Saber, Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, thesis, Massachusetts Institute of Technology, United States., 2001.
    [31] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158, 2007.
    [32] N. Kazantzis and C. Kravaris, “Time-discretization of nonlinear control systems via Taylor methods,” Computers & Chemical Engineering, vol. 23, no. 6, pp. 763–784, 1999.
    [33] B. S. Chen, C. S. Tseng and H. J. Uang, "Robustness design of nonlinear uncertain system via fuzzy linear control" IEEE Trans. Fuzzy Systems, pp. 571-585, 1999.
    [34] B. S. Chen, C. S. Tseng and H. J. Uang, "Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach" IEEE Trans. Fuzzy Systems, pp. 249-265, 2000.
    [35] N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method. New York, NY: Springer New York, 1977.
    [36] W. B. Gao and J. C. Hung, “Variable structure control of nonlinear systems: A new approach,” IEEE Trans. Ind. Electron., Feb. 1993, pp. 45-55.
    [37] 吳明, 離散型全程擬滑動模式控制器設計及其應用, 博士論文, 國立清華大學動力機械工程學系, 台灣., 2015.
    [38] K. Furuta, “Sliding mode control of a discrete system,” Systems & Control Letters, vol. 14, no. 2, pp. 145–152, 1990.
    [39] M. Wu and J.S. Chen, “The design of chattering alleviated sliding mode control using wavelet approach,” 2013 CACS International Automatic Control Conference (CACS), pp. 480–485, 2013.
    [40] A. Solimeno, Low-cost INS/GPS data fusion with extended Kalman filter for airborne applications, Masters of Science, Universidade Technica de Lisboa, República Portuguesa., 2007.
    [41] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–7, 2011.

    QR CODE