研究生: |
詹立行 Li Hsin Chan |
---|---|
論文名稱: |
含順丁烯亞醯胺之新型共聚高分子之合成與鑑定及其高分子電激發光元件應用 Synthesis and Characterization of New 3,4-Diphenylmaleimide-Based Copolymers for Polymer Light-Emitting Diodes |
指導教授: |
李育德
Yu Der Lee 陳錦地 Chin Ti Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 229 |
中文關鍵詞: | 二苯順丁烯亞醯胺 、電激發光 、紅色 、橘色 、電激發光高分子 、共聚高分子 、螢光 |
外文關鍵詞: | diphenylmaleimide, light-emitting, red, orange, light-emitting polymer, copolymer, fluorescence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
不同於以往文獻上所發表之有機電激發光高分子基材,本研究係利用本研究室所合成出之新的單體‐二苯順丁烯亞醯胺衍生物 (3,4-diphenylmaleimide derivative) 作為主要單體,搭配不同之共聚單體,合成出一系列新型有機電激發光高分子。研究之方向主要分為兩個部分,第一部份為半共軛系統型有機電激發光高分子,第二部分為全共軛系統型有機電激發光高分子。
回顧歷年來之文獻,倘若要設計放射紅色螢光之電激發光高分子,往往需要經過一連串之合成途徑,方能達成。第一部份之構想即為利用簡易合成之方式,快速地合成出一系列放射紅色螢光之有機電激發光高分子;利用二苯順丁烯亞醯胺衍生物五圓環上之羧酸基作為拉電子基,以另外製備不同之芳香胺作為推電子基,藉由高分子聚合反應,在適當的催化劑及反應條件下,將兩單體耦合,進而合成出一系列具放射紅色螢光之有機電激發光高分子。此部分共合成出九種有機電激發光高分子,前三種為利用二苯順丁烯亞醯胺衍生物與不同之一級芳香胺進行共聚合反應;而後六種則為利用二苯順丁烯亞醯胺衍生物與不同之二級芳香雙胺進行共聚合反應。研究之結果顯示,利用一級芳香胺所合成出之共聚物,因立體障礙效應之緣由,分子量均無法提高;從高分子之溶液態螢光光譜與固體薄膜螢光光譜相互比較,發現分子具有嚴重之自我堆疊現象。為改善此一缺失,故合成了不同之二級芳香雙胺。分子設計之概念為導入長烷基,藉以提高分子之聚合度;利用分子的結構調整芳香胺之推電子能力,用以微調共聚物之光色。實驗之結果顯示,經由分子之設計,不僅提高了共聚物之分子量,並且減少了分子自我堆疊之現象;此外,藉由微調二級芳香雙胺推電子之能力,可將共聚物之光色加以調整,使其可位於人類可見光之範疇。將所合成出之共聚物製作成電激發光元件,其所放射出之紅色螢光,在色彩學之座標上,呈現出飽和之紅色 (saturated red),CIE之色座標為 (0.66, 0.33)。
為了增加電激發光元件之效率,以及更進一步提高共聚物之分子聚合度,於是設計了第二部分之研究。此部分一共合成了六種全共軛型有機電激發光高分子、以及五種模型化合物 (model compounds) 用以研究共聚物之發光機制。本系列仍沿用二苯順丁烯亞醯胺衍生物作為主要單體,相較於第一部份所使用之單體,此單體於結構上改變了氮上之取代基,由原來之甲基轉變為乙基己基。藉由第一部份之實驗結果得知,二苯順丁烯亞醯胺衍生物氮上之取代基,對於避免分子間之堆疊,扮演了很重要之角色,故此部分主要單體氮上之取代基,將其改變為乙基己基。此部分所合成之共聚物,為利用二苯順丁烯亞醯胺衍生物作為主要單體,搭配不同之共聚單體,合成出一系列全共軛型之有機電激發光高分子。共聚單體之設計,導入了多數之長烷基,其目的為更進一步增加分子之聚合度;為了提高共聚物本身之螢光量子效率及電激發光元件之效率,共聚單體亦選用文獻中常見之fluorene單體;由於二苯順丁烯亞醯胺衍生物為傾向傳電子性質之化合物,為設計高分子本身便具有電荷平衡之概念,引入了carbazole單體作為共聚單體,並藉由carbazole單體具有推電子之能力,可將共聚物之光色,做些許之調整。
研究結果顯示,利用PBTML所製作成之單層元件,其電激發光波長在620 nm,元件之外部量子效率為0.05%;倘若於元件結構中加入電子傳輸層TPBI,製作成雙層結構之元件,其元件之電激放射波長為624 nm,外部量子效率可提升至0.61%,最大亮度可達1290 cd/m2。利用PFTML所製作出之單層有機電激發光元件,其電激放射波長為620 nm,元件效率為0.95 cd/A,最大亮度為1900 cd/m2;若同樣加入電子傳輸層,將元件製作成雙層元件,其元件效率可提升至1.25 cd/A,最大亮度為2020 cd/m2。而PTTML,其元件效率雖說並無上述兩者有所突破,但其色純度可到達色彩學座標飽和之位置,其CIE值為 (0.65, 0.33)。將PFBTML製作成有機電激發光元件,其電激放射波長為624 nm,元件之最大亮度為1230 cd/m2,而元件之效率為1.03 cd/A,CIE值為 (0.60, 0.40)。由上述結果顯示,二苯順丁烯亞醯胺衍生物可扮演電子傳輸之角色,可使元件內部產生電荷平衡之效應,既使不加入電子傳輸層於元件中,亦可達到幾近相等之成效。
Abstract
Unlike the light-emitting polymers published in the literatures, the aim of this research utilize the new monomer- 3,4-diphenylmaleimide derivative as the main monomer, to develop a series of novel light-emitting polymers. The contents of the thesis can be divided into two parts, one is to synthesize semi-conjugated light-emitting polymers, and the other is to synthesize fully-conjugated light-emitting polymers.
Most of known red light-emitting polymers are not easily accessible and require lengthy synthesis procedure in the preparation of suitable monomers. In the first part of the study, we report readily method to synthesize a series of 3,4-diphenylmaleimide-based copolymers. The maleimide-based red-fluorescent polymers were easily synthesized from palladium catalyzed polycondensation of N-alkyl-3,4-bis (4-bromophenyl)maleimide with commercially available or readily prepared primary arylamines or secondary aryldiamines. The resulting polymers derived from primary arylamines in general show low molecular weight. The low molecular weight of the primary arylamine-derived polymer can be attributed to the unfavored close proximity of the adjacent maleimide rings. Compared the fluorescence spectra in a solution with in a solid film, these copolymers suffered from serious problem of self-aggregation. With judiciously selection of arylamine monomers, the self-aggregation and red-shifting of the solid film fluorescence can be largely diminished. A PLED was fabricated for preliminary test of the red electroluminescence (EL), it showed EL corresponding to CIEx,y of (0.66, 0.33) , which is comparable with or better than CIEx,y of (0.64, 0.33), the standard red color of National Television System Committee (NTSC).
To enhance the device efficiency and the degree of polymerization of polymers, a series of newly designed 3,4-diphenylmaleimide-based □-conjugated copolymers were synthesized in the second part of study. In addition, to investigate the light-emitting behaviors of copolymers, we also designed five model compounds to study. Compared the 3,4-diphenylmaleimide derivative used in the first part of study, we use ethylhexyl group instead of methyl group on the N-position of maleimide. It found that the substitutent of maleimide play an important role in preventing of molecules self-aggregation.
Polymer light-emitting diodes (PLEDs) fabricated from PTTML exhibited saturated red electroluminescence (EL) corresponding to CIEx,y of (0.66, 0.33) with emission □maxEL of 676 nm. TPBI (2,2’,2’’-(1,3,5-phenylene)-tris-(1-phenyl-1H-benzimidazole), as the electron-transporting layer in PLEDs was found to improve the performance of 3,4-diphenylmaleimide-bithiophene copolymer (PBTML). PBTML PLED yielded reddish EL (emission □maxEL of 620 nm) with peak efficiencies of 0.89 cd/A and a maximum electroluminance of 1290 cd/m2. PFTML PLEDs yielded bright orange-red EL (emission □maxEL of 614 nm) with a high intensity of over 2000 cd/m2 and an enhanced peak luminous efficiency of 1.25 cd/A, or an external quantum efficiency of 0.74%. PFBTML PLED yielded reddish EL (corresponding to CIEx,y of (0.60, 0.40) with emission □maxEL of 624nm) with peak efficiencies of 1.03 cd/A and a maximum electroluminance of 1230 cd/m2.
第九章 參考文獻
[1] M. Pope, H. P. Kallmann, P. Magnate, J. Chem. Phys. 1963, 38, 2042.
[2] W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 1965, 14, 229.
[3] W. Helfrich, W. G. Schneider, J. Chem. Phys. 1966, 44, 2902.
[4] C. W. Tang, S. A Van Slyke, Appl. Phys. Lett. 1987, 51, 913.
[5] J. H. Burroughes□ D. D. C. Bradley□ A. R. Brown□ R. N. Marks□ K. Mackay□ R. H. Friend□ P. L. Burns□ and A. B. Holmes□ Nature□ 1990□ 347□ 539
[6] C. W. Tang, S. A Van Slyke, and C. H. Chen□ J. Appl. Phys. 1989□ 65□ 3610.
[7] C. Adachi□ S. Tokito□ T. Tsutsui□ and S. Saito□ Chem. Phys. Lett. 1991□ 178□ 488.
[8] M. Era□ C. Adachi□ T. Tsutsui□ and S. Saito□ Chem. Phys. Lett. 1991□ 178□ 488.
[9] J. Kido□ M. Kohda□ K. Okuyama□ and K. Nagai□ Appl. Phys. Lett. 1992□ 61□ 761.
[10] K.-W. Klupfel□ O. Sus□ H. Behmenburg□ and W. Neugebauer□ US 3□ 180□ 730□ 1965.
[11] T. B. Brantly□ L. E. Contois□ and C. J. Fox□ US 3□ 567□ 450□ 1971.
[12] T. B. Brantly□ L. E. Contois□ and C. J. Fox□ US 3□ 658□ 520□ 1972.
[13] O’Brien, D. F.; Burrows, P. E.; Forrest, S. R.; Koene, B. E.; Loy, D. E.; Thompson, M. E. Adv. Mater. 1998, 10, 1108.
[14] An single crystal X-ray crystallography of Alq3 was performed by Analytical Technology Division□ Eastman Kodak Company.
[15] C. Hosokawa□ H. Tokailin□ H. Higashi□ and T. Kusumoto□ Appl. Phys. Lett. 1992□ 60□ 1220.
[16] B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, W.A. Gambling, Appl. Phys. Lett. 1999, 75, 4010.
[17] T. C. Wong, J. Kovac, C. S. Lee, L. S. Hung, S. T. Lee, Chem. Phys. Lett. 2001, 334, 61.
[18] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed. 1998, 37, 402.
[19] D. H. Hwang, S. T. Kim, X. C. Li, B. S. Chuah, J. C. DeMello, R. H. Friend, S. C. Moratti, A. B. Holmes, Abstr. Pap. Am. Chem. S. 1997, 213, 379.
[20] F. Koch, W. Heitz, Macromol. Chem. Phys. 1997, 198, 1531.
[21] S. Pfeiffer, H. H. Horhold, Macromol. Chem. Phys. 1997, 200, 1870.
[22] G. J. Sarnecki, P. L. Brun, A. Kraft, R. H. Reiend, A. B. Holmes, Synth. Met. 1993, 55, 914.
[23] F. Wudl, S. Hoger, C. Zhang, K. Parbz, A. J. Heeger, Polym. Prepr. 1993, 34, 197.
[24] R. M. Gurge, A. Sarker, P. M. Lathti, B. Hu, F. E. Karasz, Macromolecules 1996, 29, 4287.
[25] R. Gowri, D. Mandal, B. Shivkumar, S. RamaKrishnan, Macromolecules, 1998, 31, 1819.
[26] C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Elec. Mater. 1993, 22, 413.
[27] C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Elec. Mater. 1994, 22, 453.
[28] M. Leclerc, F. M. Diaz, G. Wegner, MaKromol. Chem. 1989, 190, 3105.
[29] H. Mao, S. Holdcroft, Macromolecules 1992, 25, 554.
[30] R. E. Gill, G. G. Malliaras, J. Wildeman, G. Hadziioannou, Adv. Mater. 1994, 6, 132.
[31] M. Berggren, O. Inganas, G. Gustafsson, J. Rasmusson, M. R. Andwersson, T. Hjertberg, O. Wennerstorm, Nature 1994, 372, 444.
[32] M. R. Andwersson, M. Berggren, O. Inganas, G. Gustafsson, J. C. Gustafesson-Carlberg, D. Selse, T. Hjerberg, O. Wennerstorm, Macromolecules 1995, 28, 7525.
[33] Y. Miyazki, T. Yamamoto, Chem. Lett. 1994, 41, 1.
[34] M. Berggren, G. Gustafsson, O. Inganas, M. R. Andwersson, T. Hjerberg, O. Wennerstorm, J. Appl. Phys. 1994, 76, 7530.
[35] Leclerc, M.; J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867.
[36] Y. Yang, Q. Pei, A. J. Heeger, J. Appl. Phys. 1996, 79, 934.
[37] M. Uchida, Y. ohmori, C. M. orishima, K. Yoshino, Synth. Met. 1993, 57, 4168.
[38] Q. Pei, Y. Yang, J. Am. Chem. Soc. 1996, 118, 7416.
[39] M. Grell, D. D. C. Bradley, M. Inbasekaran, E. P. Woo, Adv. Mater. 1997, 9, 798.
[40] G. Grem, G. Leditzky, B. Ullrich, G. Leising, Adv. Mater. 1992, 4, 36.
[41] Y. Ohmori. K. Yoshino, M. Uchida, Jpn. J. Appl. Phys. 1991, 30, 1941.
[42] Neher D. Macromol. Rapid. Commun. 2001, 22, 1385.
[43] L. J. Rothberg, A. J. Lovinger, J. Mater. Res. 1996, 11, 3174.
[44] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, Harcourt Brace & Co., 1998, p 357.
[45] S. A. Jenekhe, J. A. Osaheni, Science 1994, 265, 765.
[46] E. M. Conwell, Synth. Met. 1997, 85, 995.
[47] J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu, H.-L. Wang, T. M. Swager, A. G. MacDiarmid, A. J. Epstein, Phys. Rev. B 1996, 54, 9180.
[48] S. Abe, Synth. Met. 1997, 85, 1015.
[49] M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, T. M. Miller, Phys. Rev. Lett. 1994, 73, 744.
[50] R. G. Sun, Y. Z. Wang, D. K. Wang, Q. B. Zheng, E. M. Kyllo, T. L. Gustafson, A. J. Epstein, Appl. Phys. Lett. 2000, 76, 634.
[51] N. C. Yang, J. K. Jeong, D. H. Suh, Polymer, 2001, 42, 7987.
[52] N. C. Yang, D. H. Suh, Polym. Bull. 2001, 46, 29.
[53] N. C. Yang, D. H. Suh, Macromol. Rapid. Commun. 2001, 22, 335.
[54] N. C. Yang, Y. H. Park, D. H. Suh, React. Funct. Polym. 2002, 51, 121.
[55] J. K. Lee, N. C. Yang, H. W. Choi, D. H. Suh, Macromol. Res. 2003, 11, 92.
[56] Q. Peng, Z. Lu, Y. Huang, M. Xie, D. Xiao, D. Zou, J. Mater. Chem. 2003, 13, 1570.
[57] T. Z. Liu, Y. Chen, Polymer 2005, 46, 10383.
[58] N. C. Greenham, S. C. Morattl, D. D. C. Bradley, R. H. Friend & A. B. Holmes. Nature, 1993, 365, 628.
[59] M. Beggren, M. Granström, O. Inganäs, and M. Andersson, Adv. Matter. 1995, 7, 900.
[60] W. L. Yu, J. Pei, A. J. Heeger, Chem. Comm., 2000, 681.
[61] G. Barbarella, L. Favaretto, G. Sotgin, M. Zambianchi, A. Bongini, C. Arbizzani, M. Mastragostino, M. Anni, G. Gigli, R. Cingolani, J. Am Chem. Soc. 2000, 122, 11971.
[62] Proceedings of SPIE-The International Society for Optical Engineering (2001), 4105 (Organic Light-Emitting Materials and Devices IV). 69-74.
[63] J. Shi, S. Zheng, Macromolecules, 2001, 34, 6571.
[64] Beaupre, M. Leclerc, Adv. Funct. Mater. 2002, 12, 192.
[65] J. F. Morin, M. Leclerc. Macromolecules 2002, 35, 8413.
[66] N. S. Cho, D. H. Hwang, J. I. Lee, B. J. Jung, H. K. Shim, Macromolecules 2002, 35, 1224.
[67] J. Huang, Y. Niu, W. Yang, Y. Mo, M. Yuan, Y. Cao, Macromolecules 2002, 35, 6080.
[68] Q. Hou, Y. Xu, W. Yang, M. Yuan, J. Peng, Y. Cao, J. Mater. Chem. 2002, 12, 2887.
[69] M. Inbasekaran, E. P. Woo, W. S. Wu and M. T. Bernius, PCT application, 2000, W0046321A1.
[70] J. H. Kim, H. Lee, Chem. Mater. 2002, 14, 2270.
[71] Y. H. Niu, J. Huang, Y. Cao, Adv. Mater. 2003, 15, 807.
[72] R. Yang, R. Tian, Q. Hou, W. Yang, Y. Cao, Macromolecules 2003, 36, 7453.
[73] Q. Peng, Z. Y. Lu, Y. Huang, M. G. Xie, S. H. Han, J. B. Peng, Y. Cao, Macromolecules 2004, 37, 260.
[74] J. Yang, C. Jiang, Y. Zhang, R. Yang, W. Yang, Q. Hpu, Y. Cao, Macromolecules 2004, 37, 1211.
[75] Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, Y. Cao, Macromolecules 2004, 37, 6299.
[76] X. Li, Y. Zhang, R. Yang, J. Huang, W. Yang, Y. Cao, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 2325.
[77] F. Wang, J. Luo, K. Yang, J. Chen, F. Huang, Y. Cao, Macromolecules 2005, 38, 2253.
[78] C. Shi, Y. Wu, W. Zeng, Y. Xie, K. Yang, Y. Cao, Macromol. Chem. Phys. 2005, 206, 1114.
[79] F. Huang, L. Hou, H. Shen, J. Jiang, F. Wang, H. Zhen, Y. Cao, J. Mater. Chem. 2005, 15, 2499.
[80] X. Li, W. Zeng, Y. Zhang, Q. Hou, W. Yang, Y. Cao, Euro. Polym. J. 2005, 41, 2923.
[81] R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang, Y. Cao, Macromolecules 2005, 38, 244.
[82] N. S. Cho, J. H. Park, S. K. Lee, J. Lee, H. K. Shim, M. J. Park, D. H. Hwang, B. J. Jung, Macromolecules 2006, 39, 177.
[83] M. C. Suh, B. D. Chin, M. H. Kim, T. M. Kang, S. T. Lee, Adv. Mater. 2003, 15, 1254.
[84] B. Stebens, B. E. Algar, J. Phys. Chem. 1968, 72, 2582.