研究生: |
張皓 |
---|---|
論文名稱: |
動力學研究銅胺基酸活化過氧化氫中pH與有機酸效應 Kinetic study of the effects of pH and organic acid on the activation of hydrogen peroxide catalyzed by Copper(II) amino acid complexes |
指導教授: |
吳劍侯
Wu, Chien-Hou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 銅錯合物 、過氧化氫 、胺基酸 、活性氧化物種 、2-甲喹啉 |
外文關鍵詞: | Copper complex, Hydrogen peroxide, Amino acid, Reactive oxygen species, Quinaldine blue |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用銅胺基酸錯合物,於25oC的磷酸緩衝溶液中活化過氧化氫,並偵測反應中的2-甲喹啉藍(QB)的初始氧化速率來探討銅錯合物活化過氧化氫效率。本實驗透過改變pH及活性氧化物種抑制劑的添加,了解過氧化氫活化系統的反應機制及其主要活性氧化物種。實驗結果發現,在以銅胺基酸錯合物活化過氧化氫的系統中,銅胺基酸錯合物可有效增加過氧化氫解離常數Ka,因此反應效率隨pH值上升而增加。此外,透過有機酸類抑制劑的添加,發現其抑制效果符合Non-competitive 的抑制模型,再藉由抑制劑與一價銅生成關係,推論LCu(I)OOH•為系統中主要的活性氧化物種,造成後續QB的氧化反應。
參考文獻:
Aksu, S.; Wang, L.; Doyle, F. M., Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine. J. Electrochem. Soc. 2003, 150, G718-G723.
An, Y. J.; Carraway, E. R., PAH Degradation by UV/H2O2 in Perfluorinated Surfactant Solutions. Water Res. 2002, 36, 309-314.
Baldrian, P.; Cajthaml, T.; Merhautova, V.; Gabriel, J.; Nerud, F.; Stopka, P.; Hruby, M.; Benes, M. J., Degradation of Polycyclic Aromatic Hydrocarbons by Hydrogen Peroxide Catalyzed by Heterogeneous Polymeric Metal Chelates. Appl. Catal. B-Environ. 2005, 59, 267-274.
Bar-Or, D.; Rael, L. T.; Lau, E. P.; Rao, N. K. R.; Thomas, G. W.; Winkler, J. V.; Yukl, R. L.; Kingston, R. G.; Curtis, C. G., An Analog of The Human Albumin N-terminus (Asp-Ala-His-Lys) Prevents Formation of Copper-induced Reactive Oxygen Species. Biochem. Biophys. Res. Commun. 2001, 284, 856-862.
Cai, R. X.; Kubota, Y.; Fujishima, A., Effect of Copper Ions on The Formation of Hydrogen Peroxide from Photocatalytic Titanium Dioxide Particles. J. Catal. 2003, 219, 214-218.
Campanella, L.; Battilotti, M.; Lecce, R., Protective Action of Antioxidants Against Amino Acids Degradation Caused by Free Radicals. Int. J. Environ. Health 2007, 1, 98-119.
Ciesla, P.; Kocot, P.; Mytych, P.; Stasicka, Z., Homogeneous Photocatalysis by Transition Metal Complexes in The Environment. J. Mol. Catal. A-Chem. 2004, 224, 17-33.
Deschamps, P.; Kulkarni, P. P.; Gautam-Basak, M.; Sarkar, B., The Saga of Copper(II)-L-histidine. Coord. Chem. Rev. 2005, 249, 895-909.
Duesterberg, C. K.; Waite, T. D., Process Optimization of Fenton Oxidation Using Kinetic Modeling. Environ. Sci. Technol. 2006, 40, 4189-4195.
Dunford, H. B., Oxidations of Iron(II)/(III) by Hydrogen Peroxide: from Aquo to Enzyme. Coord. Chem. Rev. 2002, 233, 311-318
ElJammal, A.; Templeton, D. M., Iron-hydroxypyridone Redox Chemistry: Kinetic and Thermodynamic Limitations to Fenton Activity. Inorg. Chim. Acta 1996, 245, 199-207.
Ensing, B.; Buda, F.; Baerends, E. J., Fenton-like Chemistry in Water: Oxidation Catalysis by Fe(III) and H2O2. J. Phys. Chem. A 2003, 107, 5722-5731.
Feng, J. Y.; Hu, X. J.; Yue, P. L., Degradation of Salicylic Acid by Photo-assisted Fenton Reaction Using Fe Ions on Strongly Acidic Ion Exchange Resin as Catalyst. Chem. Eng. J. 2004, 100, 159-165.
Ghiselli, G.; Jardim, W. F.; Litter, M. I.; Mansilla, H. D., Destruction of EDTA Using Fenton and Photo-Fenton-like Reactions under UV-A Irradiation. J. Photochem. Photobiol. A-Chem. 2004, 167, 59-67.
Goldstein, S.; Meyerstein, D., Comments on The Mechanism of The "Fenton like" Reaction. Accounts Chem. Res. 1999, 32, 547-550.
Hanaoka, S.; Lin, J. M.; Yamada, M., Chemiluminescence Behavior of The Decomposition of Hydrogen Peroxide Catalyzed by Copper(II)-amino acid Complexes and Its Application to The Determination of Tryptophan and Phenylalanine. Anal. Chim. Acta 2000, 409, 65-73.
Hariharaputhiran, M.; Zhang, J.; Ramarajan, S.; Keleher, J. J.; Li, Y. Z.; Babu, S. V., Hydroxyl Radical Formation in H2O2-amino acid Mixtures and Chemical Mechanical Polishing of Copper. J. Electrochem. Soc. 2000, 147, 3820-3826.
Kato, Y.; Kitamoto, N.; Kawai, Y.; Osawa, T., The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radical Biol. Med. 2001, 31, 624-632.
Kremer, M. L., The Fenton Reaction. Dependence of The Rate on pH. J. Phys. Chem. A 2003, 107, 1734-1741.
Kremer, M. L., Promotion of The Fenton Reaction by Cu2+ Ions: Evidence for Intermediates. Int. J. Chem. Kinet. 2006, 38, 725-736.
Li, J. M.; Meng, X. G.; Hu, C. W.; Du, J.; Zeng, X. C., Oxidation of 4-chlorophenol catalyzed by Cu(II) complexes under mild conditions: Kinetics and mechanism. J. Mol. Catal. A: Chem. 2009, 299, 102-107.
Lin, T. Y.; Wu, C. H., Activation of Hydrogen Peroxide in Copper(II)/Amino Acid/H2O2 Systems: Effects of pH and Copper Speciation. J. Catal. 2005, 232, 117-126.
Meng, X. G.; Guo, Y.; Hu, C. W.; Zeng, X. C., Mimic models of peroxidase - kinetic studies of the catalytic oxidation of hydroquinone by H2O2. J. Inorg. Biochem. 2004, 98, 2107-2113.
Mohamadin, A. M., Possible Role of Hydroxyl Radicals in The Oxidation of Dichloroacetonitrile by Fenton-like Reaction. J. Inorg. Biochem. 2001, 84, 97-105.
Monfared, H. H.; Amouei, Z., Hydrogen Peroxide Oxidation of Aromatic Hydrocarbons by Immobilized Iron(III). J. Mol. Catal. A-Chem. 2004, 217, 161-164.
Murata, M.; Suzuki, T.; Midorikawa, K.; Oikawa, S.; Kawanishi, S., Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide. Free Radical Biol. Med. 2004, 37, 793-802.
Nam, K.; Rodriguez, W.; Kukor, J. J., Enhanced Degradation of Polycyclic Aromatic Hydrocarbons by Biodegradation Combined with a Modified Fenton Reaction. Chemosphere 2001, 45, 11-20.
Nam, S.; Renganathan, V.; Tratnyek, P. G., Substituent Effects on Azo Dye Oxidation by The Fe-III-EDTA-H2O2 System. Chemosphere 2001, 45, 59-65.
Nerud, F.; Baldrian, P.; Gabriel, J.; Ogbeifun, D., Decolorization of Synthetic Dyes by The Fenton Reagent and The Cu/pyridine/H2O2 System. Chemosphere 2001, 44, 957-961.
Nunn, C. C.; Schechter, R. S.; Wade, W. H., Visual Evidence Regarding The Nature of Hemimicelles through Surface Solubilization of Pinacyanol Chloride. J. Phys. Chem. 1982, 86, 3271-3272.
Osborn-Barnes, H. T.; Akoh, C. C., Copper-catalyzed oxidation of a structures lipid-based emulsion containing α-Tocopherol and citric acid: influence of pH and NaCl. J. Agric. Food Chem. 2003, 51, 6851-6855.
Paczesniak, T.; Sobkowiak, A., The Influence of Solvent on The Reaction between Iron(II), (III) and Hydrogen peroxide. J. Mol. Catal. A-Chem. 2003, 194, 1-11.
Panda, A. K.; Chakraborty, A. K., Studies on The Interaction of Bacterial Lipopolysaccharide with Cationic Dyes by Absorbance and Fluorescence Spectroscopy. J. Photochem. Photobiol. A-Chem. 1997, 111, 157-162.
Pelmenschikov, V.; Siegbahn, P. E. M., Copper-zinc Superoxide Dismutase: Theoretical Insights into The Catalytic Mechanism. Inorg. Chem. 2005, 44, 3311-3320.
Poulios, I.; Micropoulou, E.; Panou, R.; Kostopoulou, E., Photooxidation of Eosin Y in The Presence of Semiconducting Oxides. Appl. Catal. B-Environ. 2003, 41 (4), 345-355.
Pecci, L., Montefoschi, G. and Cavallini, D., Some new details of the copper-hydrogen peroxide interaction. Biochemical and Biophysical Research Communications 1997, 235, 264-267.
Sabate, R.; Estelrich, J., Pinacyanol as Effective Probe of Fibrillar β-Amyloid Peptide: Comparative Study with Congo Red. Biopolymers 2003, 72, 455-463.
Sabate, R.; Gallardo, M.; de la Maza, A.; Estelrich, J., A Spectroscopy Study of The Interaction of Pinacyanol with N-dodecyltrimethylammonium Bromide Micelles. Langmuir 2001, 17, 6433-6437.
Schweigert, N.; Acero, J. L.; von Gunten, U.; Canonica, S.; Zehnder, A. J. B.; Eggen, R. I. L., DNA Degradation by The Mixture of Copper and Catechol is Caused by DNA-copper-hydroperoxo Complexes, Probably DNA-Cu(I)OOH. Environ. Mol. Mutagen. 2000, 36, 5-12.
Seal, S.; Kuiry, S. C.; Heinmen, B., Effect of Glycine and Hydrogen Peroxide on Chemical-Mechanical Planarization of Copper. Thin Solid Films 2003, 423, 243-251.
Simeon, A.; Wegrowski, Y.; Bontemps, Y.; Maquart, F. X., Expression of Glycosaminoglycans and Small Proteoglycans in Wounds: Modulation by The Tripeptide-copper Complex Glycyl-L-Histidyl-L-Lysine-Cu2+. J. Invest. Dermatol. 2000, 115, 962-968.
Stylidi, M.; Kondarides, D. I.; Verykios, X. E., Visible Light-induced Photocatalytic Degradation of Acid Orange 7 in Aqueous TiO2 Suspensions. Appl. Catal. B-Environ. 2004, 47, 189-201.
Sykora, J., Photochemistry of Copper Complexes and Their Environmental Aspects. Coord. Chem. Rev. 1997, 159, 95-108.
Toniolo, R.; Comisso, N.; Bontempelli, G.; Schiavon, G., Amperometric Determination of Peroxides by Glassy Carbon Electrodes Modified with Copper-phenanthroline Complexes. Electroanalysis 1996, 8, 151-157.
Velusamy, S.; Punniyamurthy, T., Copper(II)-catalyzed C-H Oxidation of Alkylbenzenes and Cyclohexane with Hydrogen Peroxide. Tetrahedron Lett. 2003, 44, 8955-8957.
Yamashita, N.; Tanemura, H.; Kawanishi, S., Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1999, 425, 107-115.
Zhang, L.; Subramanian, R. S., A Model of Abrasive-free Removal of Copper Films Using an Aqueous Hydrogen Peroxide-glycine Solution. Thin Solid Films 2001, 397, 143-151.
Zhao, X. K.; Yang, G. P.; Wang, Y. J.; Gao, X. C., Photochemical Degradation of Dimethyl Phthalate by Fenton Reagent. J. Photochem. Photobiol. A-Chem. 2004, 161, 215-220.
郭俊廷. 銅-胺基酸錯合物活化H2O2之動力學與反應機制探討. 碩士論文,
國立清華大學, 2006.
林采吟. 水相系統中過氧化氫的活化與量測. 博士論文, 國立清華大學, 2007.
蘇育褘. 銅-胺基酸錯合物活化H2O2之研究:醛及有機酸的效應. 碩士論文, 國立清華大學, 2007.