研究生: |
蕭君佑 |
---|---|
論文名稱: |
銅金屬錯合物催化原子轉移自由基聚合反應 Copper Complexes Mediated Atom Transfer Radical Polymerization (ATRP) |
指導教授: |
彭之皓
Peng, Chi-How |
口試委員: |
廖文峯
Liaw, Wen-Feng 韓建中 Han, Chien-Chung 陳俊太 Chen, Jiun-Tai 彭之皓 Peng, Chi-How |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 原子轉移自由基聚合反應 、苯乙烯 、丙烯酸甲酯 、甲基丙烯酸甲酯 |
外文關鍵詞: | ATRP, styrene, MMA, MA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砒碇-亞胺銅金屬錯合物、含氧化銅的多孔性氧化矽材料以及金屬串錯合物用於改善原子轉移自由基聚合反應 (ATRP)。兩種吡啶-亞胺銅金屬錯合物 (CuII(paenMe2)Br2與CuII(paenEt2)Br2),使用電子轉移活化 (AGET) 與補充活化劑與還原劑 (SARA) ATRP控制聚合反應的分子量分布 (Mw/Mn = 1.16 ~ 1.28) 與分子量 (Mn ~ Mn,th)。測定CuII(paenMe2)Br2的活化速率常數 (kact = 7.96 × 10-3 M-1 s-1) 並利用平衡常數 (KATRP = kact/kdeact = 2.9 × 10-8) 推算去活化速率常數 (kdeact = 2.8 × 105 M-1 s-1),說明亞胺銅金屬錯合物用於AGET與SARA ATRP能改善ATRP在高單體轉換率時分子量偏離理論值的現象,這是零價銅金屬用於ATRP聚合苯乙烯的首例。
含氧化銅的多孔性氧化矽材料用於一般、電子轉移活化與起始劑持續再生 (ICAR) ATRP以控制甲基丙烯酸甲酯聚合,希望在反應結束後,簡單過濾即可移除含銅物種,在甲基丙烯酸甲酯的一般與AGET ATRP中,隨著的控制效果提升,銅離子也由氧化矽上脫離造成純化上的困難;ICAR ATRP聚合MMA過程中,並未觀察到銅離子由氧化矽上脫離,但也未觀察到聚合物可控制的特性。金屬串錯合物用於ICAR ATRP聚合苯乙烯與丙烯酸甲酯。 [CuNiCu(dpa)4]Cl2、[CuNi2(dpa)4]Cl2與[Cu3(dpa)4]Cl2用於ICAR ATRP聚合丙烯酸甲酯過程中,並未觀察到可控聚合的現象;[Cu3(dpa)4]Br2用於ICAR ATRP聚合丙烯酸甲酯與苯乙烯的過程中,觀察到緩慢的聚合速度,原因為CuNiCu(dpa)4Br2分解所產生的銅離子與起始劑反應造成的結果。
ABSTRACT
Pyridyl-imine copper complexes, mesoporous silicate with CuO, and metal wire complexes have been applied to atom transfer radical polymerization (ATRP). Two pyridyl-imine based copper complexes, CuII(paenMe2)Br2 and CuII(paenEt2)Br2, were used to mediate the normal, AGET (activators generated by electron transfer), and SARA (supplemental activator and reducing agent) ATRP of styrene. The polymeric products showed a low polydispersity (Mw/Mn = 1.16 ~ 1.28) and the molecular weight matched the theoretical values.
The CuO on mesoporous silicate attached on the surface was also applied to normal, AGET, and ICAR (initiators for continuous activator regeneration) ATRP of methyl methacrylate. The silicate particles could simplify the purification of polymeric products. Silicate with CuO could mediate AGET ATRP but released the copper ions. On the other hand, silicate with CuO was possibly involved in the reaction of ICAR ATRP without desorption of copper ions but only limited living characters were obtained. ICAR ATRP of methacrylate mediated by metal wire complexes, [CuNiCu(dpa)4]Cl2, [CuNi2(dpa)4]Cl2, and [Cu3(dpa)4]Cl2, didn’t show the control properties. In [Cu3(dpa)4]Br2 mediated ICAR ATRP of methacrylate and styrene, the catalyst seem to be decomposed and increased of molecular weight with conversion, were observed during the slower polymerization.
參考文獻
1. Peng, C.-H.; Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B., Polym. Chem. 2013, 4, 3098–3104.
2. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Chem. Rev. 2006, 106, 3936-3962.
3. Yamago, S.; Iida, K.; Yoshida, J.-i., J. Am. Chem. Soc. 2002, 124, 2874-2875.
4. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2012, 65, 985-1076.
5. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2009, 62, 1402-1472.
6. Perrier, S.; Takolpuckdee, P., J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5347-5393.
7. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58, 379-410.
8. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Macromolecules 1993, 26, 2987-2988.
9. Wang, J.-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
10. Percec, V.; Barboiu, B., Macromolecules 1995, 28, 7970-7972.
11. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990.
12. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
13. Kamigaito, M.; Ando, T.; Sawamoto, M., Chem. Rev. 2001, 101, 3689-746.
14. Cunningham, M. F., Prog. Polym. Sci. 2008, 33, 365-398.
15. Ouchi, M.; Terashima, T.; Sawamoto, M., Chem. Rev. 2009, 109, 4963-5050.
16. Rosen, B. M.; Percec, V., Chem. Rev. 2009, 109, 5069-5119.
17. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31, 5559-5562.
18. Braunecker, W. A.; Matyjaszewski, K., Prog. Polym. Sci. 2007, 32, 93-146.
19. Gao, H.; Matyjaszewski, K., Prog. Polym. Sci. 2009, 34, 317-350.
20. Chen, H.-Y.; Lahann, J., Langmuir 2010, 27, 34-48.
21. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K., Prog. Polym. Sci. 2012, 37, 18-37.
22. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K., Chem. Rev. 2012, 112, 3959-4015.
23. Matyjaszewski, K.; Tsarevsky, N. V., Nat. Chem. 2009, 1, 276-288.
24. Matyjaszewski, K., Macromolecules 2012, 45, 4015-4039.
25. Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101, 3661-3688.
26. Debuigne, A.; Caille, J. R.; Jérôme, R., Angew. Chem. 2005, 117, 1125-1128.
27. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
28. Tang, W.; Tsarevsky, N. V.; Matyjaszewski, K., J. Am. Chem. Soc. 2006, 128, 1598-1604.
29. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K., J. Am. Chem. Soc. 2008, 130, 10702-10713.
30. Pintauer, T.; Matyjaszewski, K., Chem. Rev. 2008, 37, 1087-1097.
31. Wang, Y.; Matyjaszewski, K., Macromolecules 2010, 43, 4003-4005.
32. Deng, Z.; Guo, J.; Qiu, L.; Yuan, C.; Zhou, Y.; Yan, F., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 664-671.
33. Duquesne, E.; Habimana, J.; Degée, P.; Dubois, P., Macromolecules 2005, 38, 9999-10006.
34. Tang, W.; Matyjaszewski, K., Macromolecules 2006, 39, 4953-4959.
35. Horn, M.; Matyjaszewski, K., Macromolecules 2013, 46, 3350-3357.
36. Seeliger, F.; Matyjaszewski, K., Macromolecules 2009, 42, 6050-6055.
37. Zhong, M.; Matyjaszewski, K., Macromolecules 2011, 44, 2668–2677.
38. Jakubowski, W.; Matyjaszewski, K., Macromolecules 2005, 38, 4139-4146.
39. Kwak, Y.; Magenau, A. J.; Matyjaszewski, K., Macromolecules 2011, 44, 811-819.
40. Jakubowski, W.; Matyjaszewski, K., Angew. Chem. Int. Ed. 2006, 118, 4594-4598.
41. Min, K.; Gao, H. F.; Matyjaszewski, K., Macromolecules 2007, 40, 1789-1791.
42. Zhang, Y. Z.; Wang, Y.; Matyjaszewski, K., Macromolecules 2011, 44, 683-685.
43. Kwak, Y.; Matyjaszewski, K., Polym. Int. 2009, 58, 242-247.
44. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V., Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15309-15314.
45. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S., J. Am. Chem. Soc. 2006, 128, 14156-14165.
46. Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M., J. Am. Chem. Soc. 2013, 135, 7355–7363.
47. Zhang, Y.; Wang, Y.; Peng, C.-H.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2011, 45, 78-86.
48. Peng, C.-H.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P., Macromolecules 2013, 46, 3803–3815.
49. Wang, Y.; Zhong, M.; Zhu, W.; Peng, C.-H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K., Macromolecules 2013, 46, 3793–3802.
50. Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2013, 46, 3816–3827.
51. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K., Science 2011, 332, 81-84.
52. Li, B.; Yu, B.; Huck, W. T.; Liu, W.; Zhou, F., J. Am. Chem. Soc. 2013, 135, 1708–1710.
53. Tang, H.; Arulsamy, N.; Radosz, M.; Shen, Y.; Tsarevsky, N. V.; Braunecker, W. A.; Tang, W.; Matyjaszewski, K., J. Am. Chem. Soc. 2006, 128, 16277-16285.
54. Perrier, S.; Berthier, D.; Willoughby, I.; Batt-Coutrot, D.; Haddleton, D. M., Macromolecules 2002, 35, 2941-2948.
55. Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J.; Shooter, A. J., Macromolecules 1997, 30, 2190-2193.
56. Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulj, D.; Shooter, A. J., Macromolecules 1999, 32, 2110-2119.
57. Turner, S. A.; Remillard, Z. D.; Gijima, D. T.; Gao, E.; Pike, R. D.; Goh, C., Inorg. Chem. 2012, 51, 10762-10773.
58. Zakrzewski, G.; Sacconi, L., Inorg. Chem. 1968, 7, 1034-1036.
59. Bamfield, P.; Price, R.; Miller, R., Inorg . Phys . Theor. 1969, 1447-1452.
60. Britovsek, G. J.; England, J.; White, A. J., Inorg. Chem. 2005, 44, 8125-8134.
61. Kickelbick, G.; Pintauer, T.; Matyjaszewski, K., New J. Chem. 2002, 26, 462-468.
62. Braunecker, W. A.; Tsarevsky, N. V.; Gennaro, A.; Matyjaszewski, K., Macromolecules 2009, 42, 6348-6360.
63. Percec, V.; Barboiu, B.; van der Sluis, M., Macromolecules 1998, 31, 4053-4056.