簡易檢索 / 詳目顯示

研究生: 朱昌珮
Chu, Chang-Pei
論文名稱: 銅氧化物與銀修飾氧化鋅奈米線於氮氧化物氣體感測之應用
Application of ZnO Nanowires Modified with CuxO and Ag in NOx Gas Sensing
指導教授: 林鶴南
Lin, Heh-Nan
口試委員: 甘炯耀
Gan, Jon-Yiew
廖建能
Liao, Chien-Neng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 氧化鋅銅氧化物氣體感測氮氧化物
外文關鍵詞: CuxO, sensing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以銅氧化物與銀修飾的氧化鋅奈米線做成的氣體感測器,偵測氮氧化物氣體吸附前後的電阻變化,探討其氣體感測的效果與機制。首先在以黃光微影製程製作鈦金屬電極圖案的矽基板上,利用簡單又低成本的水熱法合成氧化鋅奈米線,並再對氧化鋅奈米線以光還原法分別進行銅氧化物與銀的修飾,進而製作成氣體感測元件。本實驗使用310 nm的紫外光激活模式,在大氣環境下對不同製程參數製作而成的氣體感測元件,進行低濃度一氧化氮與二氧化氮的氣體感測。
    由掃描式電子顯微鏡、穿透式電子顯微鏡與能量色散X射線光譜,分析材料的表面形貌、材料結構與元素組成,確認了氧化鋅奈米線的良好結晶性,以及分布於其上的氧化銅、氧化亞銅和銀。未經修飾的氧化鋅奈米線,對1 ppm的一氧化氮氣體響應度為46%;而在氧化鋅奈米線加上銅氧化物或銀的修飾後,皆可增加其對一氧化氮氣體的響應度。其中在氧化鋅奈米線上分別加上以10-4 M之硫酸銅水溶液光還原50分鐘的銅氧化物,以及以0.05 M之硝酸銀水溶液光還原1.5分鐘的銀,於 1 ppm的一氧化氮氣體感測,分別得到401%與168%的響應值。若在氧化鋅奈米線上共修飾最佳參數的銅氧化物與銀,對1 ppm一氧化氮氣體響應度則可以達628%,對0.03 ppm的一氧化氮也可以達到43%的響應。而以銅氧化物與銀的最佳參數共修飾的元件,對1 ppm的二氧化氮氣體感測響應度可達到4305%,對0.03 ppm二氧化氮的響應度也高達600%。
    加銅氧化物與銀修飾的氧化鋅奈米線,使氣體感測響應度提升的原因,除了表面空乏區增加,使感測前後的電阻率變化更為敏銳外;從照光前後的電阻率變化,推測修飾後的氧化鋅奈米線在異質接面產生能帶變化,促使照光後產生的電子電洞對的再結合率降低,增加氣體吸附的可能;另外銅氧化物和銀對於氮氧化物的活性也是增強氣體感測響應度的原因之一。
    本實驗以簡單與便宜的製程製作出對氮氧化物氣體響應良好的材料,在未來開發商業化的低濃度氮氧化物氣體感測器有很大的潛力。


    In this work, the gas sensors based on CuxO and Ag modified ZnO nanowires (NWs) for NOx gas are reported. Detecting the changes in resistances due to the adsorption of NOx, the property and mechanism of the NOx gas sensors is discussed. The ZnO NWs were first grown by simple and low-cost hydrothermal growth method on Si substrate with patterned Ti electrodes realized by photolithography. Then the ZnO NWs were modified by adding CuxO and Ag respectively by photoreduction processes. In this experiment, the gas sensors fabricated with different photoreduction parameters were used to sense NO and NO2 gas under ambient environment by using 310 nm UV light activation mode.
    The results of scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy show the morphology, structure and elemental composition of the materials. Besides, they confirm the good crystallinity of the ZnO NWs and the decoration of CuO, Cu2O and Ag. The response of ZnO NWs for 1 ppm NO gas is 46%, and the ZnO NWs modified with CuxO or Ag show better response for NO gas. The responses of CuxO/ZnO sensor under the condition of 50 minutes photoreduction with 10-4 M copper sulfate aqueous solution and Ag/ZnO sensor under the condition of 1.5 minutes photoreduction with 0.05 M silver nitrate aqueous solution are 401% and 168% respectively. The response of Ag/CuxO/ZnO sensor with the best photoreduction parameters for NO gas sensing is 628% at 1 ppm, and 43% at 0.03 ppm. Moreover, the response of the Ag/CuxO/ZnO sensor for NO2 gas sensing achieved 4305% at 1 ppm, and 600% at 0.03 ppm.
    The reasons for the enhancement of gas sensing with the modification of ZnO NWs by CuxO and Ag attribute to the more sensitive resistance changes caused by the increase in surface electron-depletion layer. In addition, from the change of resistivity before and after UV light illumination, it can be inferred that the modified ZnO NWs produce energy band changes at the heterojunction, which decreases the recombination probability of electron hole pairs produced after illumination and increase the possibility of gas adsorption. Furthermore, the activities caused by CuxO and Ag also enhance the gas sensing responsivity for NOx gas.
    In this work, the NOx gas sensor with excellent sensing capability and low fabrication cost is demonstrated. It shows a great potential on the development of a commercial low-concentration NOx gas sensor in the future.

    中文摘要 II Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 氧化鋅奈米線 4 2.1.1 晶體結構 4 2.1.2 成長機制與方法 5 2.1.3 氧化鋅的n-type半導體性質 7 2.1.4 氧化鋅的光學性質 8 2.2 氣體感測原理 10 2.2.1 氣體吸脫附 10 2.2.2 氧化鋅與一氧化氮/二氧化氮 12 2.3 感測元件之回復特性 14 2.3.1 加溫 14 2.3.2 照光 15 2.4 異質材料提高氣體感測響應 19 2.4.1 銅氧化物與氮氧化物 21 2.4.2 銀與氮氧化物 22 2.5 光還原法 23 2.5.1 銅氧化物 23 2.5.2 銀奈米粒子 23 第三章 實驗儀器與方法 25 3.1 實驗設計 25 3.2 元件與材料製作 26 3.2.1 基板電極製作 26 3.2.2 氧化鋅奈米線成長 27 3.2.3 銅氧化物與銀結構之修飾 29 3.2.4 元件組裝 30 3.3 分析儀器 31 3.3.1 掃描式電子顯微鏡 31 3.3.2 穿透式電子顯微鏡 31 3.3.3 能量色散X射線光譜 31 3.4 氣體感測 32 3.4.1 氣體感測系統架構 32 3.4.2 氣體濃度計算 33 3.4.3 氣體感測操作步驟 34 第四章 結果與討論 35 4.1 材料分析 35 4.1.1 表面形貌 35 4.1.2 元素組成比例 39 4.1.3 元素成分分析 41 4.2 一氧化氮氣體感測結果 42 4.2.1 氧化鋅奈米線 42 4.2.2 不同還原時間的銅氧化物修飾 44 4.2.3 不同還原時間的銀修飾 46 4.2.4 不同還原時間的銅氧化物加銀修飾 47 4.2.5 加修飾物前後的試片對不同濃度的一氧化氮氣體感測比較 49 4.3 二氧化氮氣體感測結果 51 4.4 機制探討 53 4.4.1 光電性分析 53 4.4.2 氮氧化物與材料的氣體感測原理 55 4.5 文獻比較 57 第五章 結論 59 參考文獻 61

    1. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical, 2011. 160(1): p. 580-591.
    2. A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators B: Chemical, 2012. 171-172: p. 25-42.
    3. M. Kampa and E. Castanas, Human health effects of air pollution. Environmental Pollution, 2008. 151(2): p. 362-7.
    4. M. Breedon, M.J.S. Spencer, and I. Yarovsky, Adsorption of NO2 on oxygen deficient ZnO(21̅1̅0) for gas sensing applications: A DFT study. The Journal of Physical Chemistry C, 2010. 114(39): p. 16603-16610.
    5. Z.L. Wang, Zinc oxide nanostructures: Growth, properties and applications. Journal of Physics: Condensed Matter, 2004. 16(25): p. R829-R858.
    6. D.R. Miller, S.A. Akbar, and P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014. 204: p. 250-272.
    7. Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Goswami, Synthesis, characterization, and applications of ZnO nanowires. Vol. 2012. 2012, Journal of Nanomaterials.
    8. S. Baruah and J. Dutta, Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009. 10(1): p. 013001.
    9. R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Letters, 2014. 7(2): p. 97-120.
    10. A. Sugunan, H.C. Warad, M. Boman, and J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006. 39(1): p. 49-56.
    11. L. Schmidt-Mende and J.L. Macmanus-Driscoll, ZnO – nanostructures, defects, and devices. Materials Today, 2007. 10(5): p. 40-48.
    12. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, and H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 2009. 105(1): p. 013502.
    13. P. Rai, S.M. Majhi, Y.-T. Yu, and J.-H. Lee, Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Advances, 2015. 5(93): p. 76229-76248.
    14. W. Wu, S. Bai, N. Cui, F. Ma, Z. Wei, Y. Qin, and E. Xie, Increasing UV photon response of ZnO sensor with nanowires array. Science of Advanced Materials, 2010. 2(3): p. 402-406.
    15. A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, and K. Kalantar-Zadeh, Characterization of ZnO nanobelt-based gas sensor for H-2, NO2, and hydrocarbon sensing. IEEE Sensors Journal, 2007. 7(5-6): p. 919-924.
    16. L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, and W.F. Zhang, Size dependence of gas sensitivity of ZnO nanorods. The Journal of Physical Chemistry C, 2007. 111(5): p. 1900-1903.
    17. S.-W. Choi and S.S. Kim, Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sensors and Actuators B: Chemical, 2012. 168: p. 8-13.
    18. X. Geng, C. Zhang, Y. Luo, and M. Debliquy, Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1−x coatings deposited on polypropylene papers by suspension flame spraying. Journal of the Taiwan Institute of Chemical Engineers, 2017. 75: p. 280-286.
    19. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, and S.H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied Physics Letters, 2008. 93(26): p. 263103.
    20. X. Geng, C. Zhang, Y. Luo, H. Liao, and M. Debliquy, Light assisted room-temperature NO2 sensors with enhanced performance based on black SnO1-α@ZnO1-β@SnO2-γ nanocomposite coatings deposited by solution precursor plasma spray. Ceramics International, 2017. 43(8): p. 5990-5998.
    21. C.-C. Liu, J.-H. Li, C.-C. Chang, Y.-C. Chao, H.-F. Meng, S.-F. Horng, C.-H. Hung, and T.-C. Meng, Selective real-time nitric oxide detection by functionalized zinc oxide. Journal of Physics D: Applied Physics, 2009. 42(15): p. 155105.
    22. N.D. Chinh, N.D. Quang, H. Lee, T. Thi Hien, N.M. Hieu, D. Kim, C. Kim, and D. Kim, NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Scientific Reports, 2016. 6: p. 35066.
    23. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, and J.G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sensors and Actuators B: Chemical, 2009. 138(1): p. 168-173.
    24. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 2007. 7(4): p. 1003-1009.
    25. Q.H. Li, Q. Wan, Y.X. Liang, and T.H. Wang, Electronic transport through individual ZnO nanowires. Applied Physics Letters, 2004. 84(22): p. 4556-4558.
    26. S. Mishra, C. Ghanshyam, N. Ram, R.P. Bajpai, and R.K. Bedi, Detection mechanism of metal oxide gas sensor under UV radiation. Sensors and Actuators B: Chemical, 2004. 97(2-3): p. 387-390.
    27. S.-W. Fan, A.K. Srivastava, and V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters, 2009. 95(14): p. 142106.
    28. V.P. Verma, S. Das, S. Hwang, H. Choi, M. Jeon, and W. Choi, Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire. Materials Science and Engineering: B, 2010. 171(1-3): p. 45-49.
    29. J. Zhang, Z. Qin, D. Zeng, and C. Xie, Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Physical Chemistry Chemical Physics, 2017. 19(9): p. 6313-6329.
    30. X. Geng, C. Zhang, Y. Luo, and M. Debliquy, Preparation and characterization of CuxO1-y@ZnO1-α nanocomposites for enhanced room-temperature NO2 sensing applications. Applied Surface Science, 2017. 401: p. 248-255.
    31. N.M. Shaalan, T. Yamazaki, and T. Kikuta, NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sensors and Actuators B: Chemical, 2012. 166-167: p. 671-677.
    32. Y. Abdu and A.O. Musa, Copper (I) oxide (Cu2O) based solar cells - a review. Bayero Journal of Pure and Applied Sciences, 2011. 2(2).
    33. X. Jiang, T. Herricks, and Y. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano Letters, 2002. 2(12): p. 1333-1338.
    34. I.C. Hwang and S.I. Woo, In Situ X-ray photoelectron spectroscopy study of Cu/ZSM-5 in the selective catalytic reduction of NO by propene. The Journal of Physical Chemistry B, 1997. 101(20): p. 4055-4059.
    35. M. Fernandez-Garcia, C.M. Alvarez, I. Rodriguez-Ramos, A. Guerrero-Ruiz, and G.L. Haller, New insights on the mechanism of the NO reduction with CO over alumina-supported copper catalysts. The Journal of Physical Chemistry, 1995. 99(44): p. 16380-16382.
    36. F.J. Williams, A. Palermo, M.S. Tikhov, and R.M. Lambert, First demonstration of in situ electrochemical control of a base metal catalyst:  Spectroscopic and kinetic study of the CO + NO reaction over Na-promoted Cu. The Journal of Physical Chemistry B, 1999. 103(45): p. 9960-9966.
    37. G. Zhang and M. Liu, Effect of particle size and dopant on properties of SnO2-based gas sensors. Sensors and Actuators B: Chemical, 2000. 69(1): p. 144-152.
    38. Y. Wang, X. Cui, Q. Yang, J. Liu, Y. Gao, P. Sun, and G. Lu, Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sensors and Actuators B: Chemical, 2016. 225: p. 544-552.
    39. L. Chen and S.C. Tsang, Ag doped WO3-based powder sensor for the detection of NO gas in air. Sensors and Actuators B: Chemical, 2003. 89(1-2): p. 68-75.
    40. D. Chen, L. Yin, L. Ge, B. Fan, R. Zhang, J. Sun, and G. Shao, Low-temperature and highly selective NO-sensing performance of WO3 nanoplates decorated with silver nanoparticles. Sensors and Actuators B: Chemical, 2013. 185: p. 445-455.
    41. K.Y. Ko, J.G. Song, Y. Kim, T. Choi, S. Shin, C.W. Lee, K. Lee, J. Koo, H. Lee, J. Kim, T. Lee, J. Park, and H. Kim, Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano, 2016.
    42. S.K. Baek, K.R. Lee, and H.K. Cho, Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance. Journal of Nanomaterials, 2013. 2013: p. 1-7.
    43. C.a.N. Fernando, P.H.C. De Silva, S.K. Wethasinha, I.M. Dharmadasa, T. Delsol, and M.C. Simmonds, Investigation of n-type Cu2O layers prepared by a low cost chemical method for use in photo-voltaic thin film solar cells. Renewable Energy, 2002. 26(4): p. 521-529.
    44. Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sensors and Actuators B: Chemical, 2010. 143(2): p. 635-640.
    45. M. Breedon, M.J.S. Spencer, and I. Yarovsky, Adsorption of NO and NO2 on the ZnO(21 ̅1 ̅0) surface: A DFT study. Surface Science, 2009. 603(24): p. 3389-3399.
    46. M.J.S. Spencer and I. Yarovsky, ZnO nanostructures for gas sensing: Interaction of NO2, NO, O, and n with the ZnO(101̅0) surface. The Journal of Physical Chemistry C, 2010. 114(24): p. 10881-10893.
    47. T. Jiang, T. Xie, L. Chen, Z. Fu, and D. Wang, Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale, 2013. 5(7): p. 2938-44.
    48. P. Shokeen, A. Jain, and A. Kapoor, Plasmonic ZnO/p-silicon heterojunction solar cell. Optical Materials, 2017. 67: p. 32-37.
    49. F.-T. Liu, S.-F. Gao, S.-K. Pei, S.-C. Tseng, and C.-H.J. Liu, ZnO nanorod gas sensor for NO2 detection. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(5): p. 528-532.
    50. E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J.C. Kim, K.-H. Lee, S.-W. Kang, J. Kim, J.-Y. Yun, and S.-H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensors and Actuators B: Chemical, 2009. 141(1): p. 239-243.
    51. N.L. Hung, E. Ahn, H. Jung, H. Kim, S.K. Hong, and D. Kim. NO gas sensing properties of ZnO wire-like thin films synthesized by thermal oxidation of sputtered Zn metallic films in air. in 2010 3rd International Nanoelectronics Conference (INEC). 2010. IEEE.
    52. S. Park, S. An, Y. Mun, and C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Applied Materials & Interfaces, 2013. 5(10): p. 4285-92.
    53. L.-Y. Hong, H.-W. Ke, C.-E. Tsai, and H.-N. Lin, Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Materials Letters, 2016. 185: p. 243-246.
    54. N. Gogurla, A.K. Sinha, S. Santra, S. Manna, and S.K. Ray, Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Scientific Reports, 2014. 4: p. 6483.
    55. G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, and F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2012. 162(1): p. 82-88.
    56. D.V. Ponnuvelu, B. Pullithadathil, A.K. Prasad, S. Dhara, A. Ashok, K. Mohamed, A.K. Tyagi, and B. Raj, Rapid synthesis and characterization of hybrid ZnO@Au core–shell nanorods for high performance, low temperature NO2 gas sensor applications. Applied Surface Science, 2015. 355: p. 726-735.
    57. T. Corlu, I. Karaduman, M.A. Yildirim, A. Ateş, and S. Acar, Effect of doping materials on the low-level NO gas sensing properties of ZnO thin films. Journal of Electronic Materials, 2017. 46(7): p. 3995-4002.

    QR CODE