研究生: |
倪鼎鈞 Ting-Chun Ni |
---|---|
論文名稱: |
微擾傳導模態計算方法 Perturbation Method of Solving Guided Modes |
指導教授: |
曾孝明
Shiao-Min Tseng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 微擾傳導模態計算方法 、微擾傳導模態 、模態計算 |
外文關鍵詞: | Perturbation Method of Solving Guided Modes |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在積體光學和光纖光學中,展示過很多的波導元件和函數。到目前為止所考慮的傳輸常數還有符合折射率的場強,如果要精確算出是非常複雜、難以計算的,為了處理這些基本的問題,我們應該利用一些從物理和數學角度提出的近似方法。
在本論文中,我們應用一種藉由研究波導結構中傳導模態的傳輸常數的近似方法,這個方法的來源很像熟悉的Lorentz reciprocity theorem。方程式用場強與折射係數寫出兩種不同波導中的傳輸常數的關係,雖然這個公式已經存在很久了,可是卻很少在文獻中被提起。為了瞭解這個近似方法的難易與好壞,我們把計算的近似結果與真正精確算出的數值比較。在我們提出的例子中,我們發現近似結果與精確數值的差異非常小,介於0.002%~0.0005%之間,也就是說這個式子在波導結構中的數值計算傳輸常數是非常近似的,因此很有可能可以通用在之前提過的問題上面。為了更準確的接近精確值,我們也會介紹反覆的近似方法。
Abstract
As far as the quantitative analyses of propagation constants are concerned, the corresponding index profiles, encountered in the real world, are too complicated which makes the exact results of the propagation constants in the wave-guiding structures unlikely. To handle this basic problem, we should resort to some kinds of approximations, either from physic or from mathematic points of view.
In this thesis, we apply an approximation method, which has a closed-form expression. The closed-form expression tells the relationship between the two propagation constants in each of two different waveguides. To check how good this approach is, we compare our approximate results with the exact values, if available. In our presented examples, we find that the discrepancies between the exact and the approximate results are rather small, to lie in between 0.002% and 0.0005%. In other words, the closed-form expression for quantitatively estimating propagation constants in wave-guiding structures is likely good, thereby possibly being universal in the problems addressed above. To get a closer result, we also introduce an iterative approach in this thesis as well.
References
[1] H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, New York: McGraw-Hill, 1989.
[2] R. Syms and J. Cozens, Optical Guided Waves and Devices, New York: McGraw-Hill, 1993.
[3] M. M.-K. Liu, Principles and Applications of Optical Communications, Chicago : Irwin, 1996.
[4] S. P. Ma and S. M. Tseng, "High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers," J. Lightwave Technol., vol. 15, pp. 1554-1558, 1997.
[5] S. M. Tseng, K. Y. Hsu, H. S. Wei, and K. F. Chen, "Analysis and experiment of thin metal-clad fiber polarizer with index overlay," IEEE Photonics Technol. Lett., vol. 9, pp. 628-630, 1997.
[6] K. Y. Hsu, S. P. Ma, K. F. Chen, S. M. Tseng, and J. I. Chen, "Surface-polariton fiber polarizer: design and experiment," Jpn. J. Appl. Phys. vol. 36, pp. L488-L490, 1997.
[7] Special Issue on Fiber Gratings, Photosensitivity, and Poling, J. Lightwave Technol., vol. 15, August 1997.
[8] N. K. Chen, S. Chi, and S. M. Tseng, Narrow-band channel-dropping filter based on side-polished fibers, Jpn. J. Appl. Phys., vol. 43, no. 4A, pp. L475-477, 2004.
[9] M. K. Swit and C. van Dam, PHASAR-based WDM-devices: principles, design and applications, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 236-250, 1996.
[10] N. K. Chen, S. Chi, and S. M. Tseng, Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay, Opt. Lett., vol. 29, pp. 2219-2221, 2004.
[11] H. Gnewuch and H. Renner, “Mode-independent attenuation in evanescent-field sensors”, Appl. Opt., vol. 34, pp. 1473-1483, 1995.
[12] M. P. Singh and A. Sharma, “Wavelength selectivity of in-line fiber-optic filter devices”, Appl. Opt., vol. 37, pp. 6530-6534, 1998.
[13] W. Van Etten and J. Van Der Plaats, Fundamentals of Optical Fiber Communications, New York: Prentice-Hall, 1991.
[14] F. Martinez, C. D. Hussey, “(E) ESI (Equivalent Step Index) determination from mode-field diameter and refractive profile measurements on singlemode fibres”, IEE Proc, Vol., 135, pt. J., No. 3, pp. 202210, June 1988; and the references therein.
[15] P. Yeh, Optical Waves in Layered Media, New York: John Wiley & Sons, 1988.
[16] D. Marcuse, Directional couplers made of nonidentical asymmetric slabs part I: synchronous couplers, J. Lightwave Technol., vol. LT-5, pp. 113-118, 1987.
[17] A. W. Snyder, J. D. Love, Optical Waveguide Theory, New York: Chapman and Hall, 1983.
[18] H. A. Haus and W.P. Huang, "Coupled-mode theory," Proc. IEEE, vol. 79, pp. 1505-1518, 1991 and the references therein.
[19] E. Garmire, "Simple solution for modeling symmetric step-index dialectric waveguides," J. Lightwave Technol., vol. 6, pp. 1103-1108, 1988.
[20] J. Kraus and P. P. Deimel., "Calculation of the propagation constant of optical modes in multiquantum-well structures," IEEE J. Quantum Electron., vol. 26, pp. 824-826, 1990.
[21] K. H. Schlereth and M. Tacke, "The complex propagation constant of multilayer waveguides: an algorithm for a personal computer," IEEE J. Quantum Electron., vol. 26, pp. 627-630, 1990.
[22] Y. F. Li and J. W. Y. Lit, "Generalized dispersion properties of a multilayer dielectric planar waveguides," J. Opt. Soc. Am. A, vol. 9, pp. 121-131, 1992
[23] S. M. Tseng, J. H. Zhan, and D. Y. Chen, "Derivation of Coupling coefficients of modes in slab couplers: ray theory," Jpn. J. Appl. Phys., vol. 38, pp. 1989-1993, 1999.
[24] S.M Tseng and J.H. Zhan, “The complex propagation constant of thin metal film surrounded with dielectric media: a simple technique,” Jap. J. Appl. Phys. Vol. 37, pp. 441-443.
[25] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York, 1988.
[26] A. Yariv, An Introduction to Theory and Applications of Quantum Mechanics, New York: Wiley, 1982.
[27] A. Yariv, Optical Electronics in Modern Communications, 5th ed., New York: Oxford University Press, 1997.
[28] R. J. Black and Ankiewicz, "Fiber-optic analogies with mechanics," Am. J. Phys., vol. 53, pp. 554-563, 1985.
[29] W. P. Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A, vol. 11, pp. 963-983, 1994 and references therein.
[30] R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, and B. Bures, "Tapered fiber," in Proc. SPIE, Components for Fiber Optic Applications II, vol. SPIE- 839, pp. 2-19, 1987.
[31] M. Eisenmann and E. Weidel, "Single-mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm," J. Lightwave Technology, vol. 6, pp. 113-119, 1988.
[32] F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broadband all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett., vol. 54, pp. 1290-1292, 1989.
[33] F. Bakthi, P. Sansonetti, C. Sinet, L. Gasca, L. Martineau, S. Lacronix, X. Daxhelet, and F. Gonthier, "Optical add/drop multiplexer based on UV-written Bragg grating
[34] A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, "All fiber zero insertion loss add drop filter for WDM," Opt. Lett., vol. 23, pp. 106-108, 1998.
[35] E. Marin, R. Ghosh, J.-P. Meunier, X. Daxhelet, and S. Lacroix, "Bragg gratings in 2×2 symmetric fused fiber couplers: influence of the tilt on the wavelength response," IEEE Photonics Technol. Lett., vol. 11, pp. 1434-1436, 1999.
[36] A. Iadicicco, S. Campopino, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photonics Technol. Lett., vol. 17, pp. 1250-1252, 2005
[37] Issei Sasaki and M. J. Adams, "Propagation in doubly clad single-mode fibers," IEEE J. Quantum Electronics, vol. QE-18, NO. 4, April 1982.
[38] D. K. Qing, X. M. Chen, K. Itoh, and M. Masayuki, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biology sensors by group index method,” J. Lightwave Technol., vol. LT-14, pp. 1907-1917, 1996.
[39] W. G. Jung, S. W. Kim, K. T, Kim, E. S. Kim, and S. W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett., vol. 13, pp. 1209-1211, 2001.
[40] A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor, ” IEEE Photonics Technol. Lett., vol. 16, pp. 1149-1151, 2004.