研究生: |
梁貝儀 Leung, Pui Yee |
---|---|
論文名稱: |
利用OLINDA/EXM及MCNPX進行錸-188微脂體藥物之診療患者體內劑量評估 Internal Dose Assessment of 188Re-Liposome Patient Estimated by OLINDA/EXM and MCNPX |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
許芳裕
Hsu, Fang-Yuh 趙君行 Chao, Jiunn-Hsing |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 錸-188微脂體 、體內劑量評估 、蒙地卡羅方法 、放射性藥物 |
外文關鍵詞: | 188Re-BMEDA-liposome, Internal dose assessment, Monte Carlo method, Radiopharmaceuticals |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用MIRD Schema之體內劑量計算評估方法,利用蒙地卡羅方法及擬人數值假體模擬驗證放射性核種與源、靶器官之各組合所建立比吸收分率和S值,並使用OLINDA/EXM及MCNPX二程式,分別針對核研所研發之「錸-188微脂體」新型放射性奈米藥物之診療患者進行體內劑量評估,透過轉換小鼠實驗數據獲得人體體內分佈近似資訊,並採用擬人數值假體進行人體體內分佈模擬及接受單次診療時之全身有效劑量計算。
本研究設計二程式三方法進行體內劑量評估,所設計之OLINDA/EXM Method 1乃輸入具時間依存性之藥物分佈進行計算,而所設計之OLINDA/EXM Method 2及MCNPX二方法乃輸入注射藥物1小時之分佈並採用錸-188物理半衰期取代藥物半衰期進行計算。由OLINDA/EXM Method 1所得體內劑量評估結果,每給予1MBq之「錸-188微脂體」新型藥物於診療患者將造成約0.164mSv之全身有效劑量。而由本研究近似之OLINDA/EXM Method 2和MCNPX所得體內劑量評估結果,每給予1MBq之「錸-188微脂體」新型藥物於診療患者將造成分別約為0.197mSv及0.180mSv之有效劑量。由OLINDA/EXM Method 1與OLINDA/EXM Method 2、OLINDA/EXM Method 1與MCNPX及OLINDA/EXM Method 2與MCNPX按照排列組合進行結果比較及數據分析所得結果差異分別約為17.0%、9.6%、8.5%。
The MIRD Schema had been investigated in this study, as the specific absorbed fraction (SAF) and the S-values were calculated by Monte Carlo method and the results were found to be consistent with literature values. Then, OLINDA/EXM and MCNPX were used to undergo internal dose assessment of the patient of 188Re-BMEDA-liposome. Through converting experimental mouse model data into anthropomorphic data, the effective dose was estimated.
Three methods of dual programs have been designed for the internal dose evaluation; they were OLINDA/EXM Method 1, OLINDA/EXM Method 2 and MCNPX method. OLINDA/EXM Method 1 was designed with time dependent pharmaceutical distribution input while OLINDA/EXM Method 2 and MCNPX methods were designed with pharmaceutical distribution at 1 hour after injection, and also the effective half-life was replaced by physical half-life. The result obtained by OLINDA/EXM Method 1 was about 0.164mSv per 1MBq administered. The results obtained by OLINDA/EXM Method 2 and MCNPX method indicated that each patient would receive an effective dose of 0.197mSv per 1MBq administered and 0.180mSv per 1MBq administered respectively. After comparing the results obtained in combinations of OLINDA/EXM Method 1 vs. OLINDA/EXM Method 2, OLINDA/EXM Method 1 vs. MCNPX and OLINDA/EXM Method 2 vs. MCNPX, the differences of values were 17.0%, 9.6%, 8.5% respectively.
[1] MOHW, "Taiwan Health and Welfare Report 2015," 1st ed: the Ministry of Health and Welfare, R.O.C. (Taiwan), 2015, pp. 12-19.
[2] G. Ting, "The Status and Prospects of Medical Applications of Isotope and Radiation Technology in Taiwan," Ann Nucl Med Sci, vol. 15, pp. 201-209, 2002.
[3] L. H. Shen, M. H. Liao, Y. K. Fu, and C. Y. Yang, "The Peaceful Applications of Isotopes and Radiations in INER," CHEMISTRY, vol. 62, pp. 409-422, 2004.
[4] G. Ting, C. H. Chang, H. E. Wang, and T. W. Lee, "Nanotargeted Radionuclides for Cancer Nuclear Imaging and Internal Radiotherapy," J Biomed Biotechnol, vol. 2010, p. 17, 2010.
[5] M. E. Lyra, M. Andreou, A. Georgantzoglou, S. Kordolaimi, N. Lagopati, A. Ploussi, et al., "Radionuclides Used in Nuclear Medicine Therapy – From Production to Dosimetry," Current Medical Imaging Reviews, vol. 9, pp. 51-75, 2013.
[6] H. K. Lee, 《新藥「錸-188 微脂體」,通過衛福部人體臨床試驗第一期,造福轉移型和晚期癌症病患》, ed: Atomic Energy Council, 2015, pp. 1-2.
[7] M. Argyrou, A. Valassi, M. Andreou, and M. Lyra, "Rhenium-188 Production in Hospitals, by W-188/Re-188 Generator, for Easy Use in Radionuclide Therapy," Int J Mol Imaging, vol. 2013, p. 290750, 2013.
[8] U. Schötzig, H. Schrader, E. Schönfeld, E. Günther, and R. Klein, "Standardisation and decay data of 177Lu and 188Re," Appl Radiat Isot, vol. 55, pp. 89-96, 2001.
[9] S. C. d. A. Lopes, C. d. S. Giuberti, T. G. R. Rocha, D. d. S. Ferreira, E. A. Leite, and M. C. Oliveira, "Liposomes as Carriers of Anticancer Drugs," in Cancer Treatment - Conventional and Innovative Approaches, L. Rangel, Ed., ed: InTech, 2013, pp. 85-124.
[10] 江徽五, 《抗癌藥品的奈米給藥傳輸》, RegMed, vol. 26, pp. 1-13, 2012.
[11] C. H. Chang, S. Y. Liu, and T. W. Lee, "Pharmacokinetics of BMEDA after Intravenous Administration in Beagle Dogs," Molecules, vol. 19, pp. 538-549, 2013.
[12] C. H. Chang, Y. J. Chang, T. W. Lee, G. Ting, and K. P. Chang, "Dosimetric evaluation of nanotargeted 188Re-liposome with the MIRDOSE3 and OLINDA/EXM programs," Ann Nucl Med, vol. 26, pp. 419-425, 2012.
[13] M. G. Stabin, "Uses of Dosimetry Information in Nuclear Medicine," in Fundamentals of Nuclear Medicine Dosimetry, ed: Springer, 2008, pp. 1-8.
[14] M. G. Stabin, "Fundamental Concepts: Calculating Radiation Dose," in Fundamentals of Nuclear Medicine Dosimetry, ed: Springer, 2008, pp. 9-32.
[15] M. G. Stabin, "Internal Dose Assessment," in Radiation Protection and Dosimetry, ed: Springer, 2007, pp. 205-243.
[16] M. G. Stabin, "Nuclear medicine dosimetry," Phys Med Biol, vol. 51, pp. R187-R202, 2006.
[17] M. G. Stabin, "Models and Resources for Internal Dose Calculations," in Fundamentals of Nuclear Medicine Dosimetry, ed: Springer, 2008, pp. 33-76.
[18] M. Cristy and K. F. Eckerman, "SPECIFIC ABSORBED FRACTIONS OF ENERGY AT VARIOUS AGES FROM INTERNAL PHOTON SOURCES. I. METHODS.," PDF Version Completed: February 2002 1987.
[19] R. W. Howell, "The MIRD Schema: From Organ to Cellular Dimensions," J Nucl Med, vol. 35, pp. 531-533, Mar 1994.
[20] W. S. Snyder, M. R. Ford, and G. G. Warner, "MIRD Pamphlet No.5 Revised: Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom," J Nucl Med, vol. 3, pp. 7-52, 1978.
[21] W. S. Snyder, M. R. Ford, G. G. Warner, and S. B. Watson, "MIRD Pamphlet No.11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs (PART 1)," vol. 11, SNM, Ed., ed, 1975, pp. 1-69.
[22] W. S. Snyder, M. R. Ford, G. G. Warner, and S. B. Watson, "MIRD Pamphlet No.11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs (PART 2)," vol. 11, SNM, Ed., ed, 1975, pp. 70-173.
[23] W. S. Snyder, M. R. Ford, G. G. Warner, and S. B. Watson, "MIRD Pamphlet No.11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs (PART 3)," vol. 11, SNM, Ed., ed, 1975, pp. 174-257.
[24] M. G. Stabin, R. B. Sparks, and E. Crowe, "OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine," J Nucl Med, vol. 46, pp. 1023-1027, Jun 2005.
[25] ICRP, 《ICRP Publication 60 国際放射線防護委員会の1990年勧告》, Ann. ICRP, pp. 8-11, 1991.
[26] OriginLab Co., "Regression and Curve Fitting," in Origin 8 User Guide, 1st ed, 2007, pp. 403-486.
[27] OriginLab Co., "Fitting," in Tutorials for Origin 8.5 SR0, 1st ed, 2010, pp. 83-140.
[28] R. G. Arns, R. D. Riggs, and M. L. Wiedenbeck, "DDECAY OF Re188," Nuclear Physics, vol. 15, pp. 125-133, 1960.
[29] B. S. Dželepov and V. D. Vitman, "NEW DATA ON THE Re188 DECAY SCHEME," Nuclear Physics, vol. 72, pp. 132-136, 1965.
[30] L. Malý, Z. Plajner, O. Dragoun, A. Kuklík, and B. Bočev, "RADIOACTIVE DECAY OF Re188," Cechoslovackij fiziceskij zurnal B, vol. 15, pp. 824-831, 1965.
[31] M. Cristy and K. F. Eckerman, "SPECIFIC ABSORBED FRACTIONS OF ENERGY AT VARIOUS AGES FROM INTERNAL PHOTON SOURCES. VII. ADULT MALE.," PDF Version Completed: February 2002 1987.
[32] A. Bitar, A. Lisbona, P. Thedrez, C. Sai Maurel, D. Le Forestier, J. Barbet, et al., "A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP)," Phys Med Biol, vol. 52, pp. 1013-1025, Feb 21 2007.
[33] X. Zhang, X. Xie, J. Cheng, J. Ning, Y. Yuan, J. Pan, et al., "Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation," Radiat Prot Dosimetry, vol. 148, pp. 9-19, Jan 2012.
[34] ICRP, 《ICRP Publication 103 国際放射線防護委員会の2007年勧告》, Ann. ICRP, pp. 25-41, 2009.
[35] J. Grimes and A. Celler, "Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques," Med Phys, vol. 41, p. 092501, Sep 2014.