研究生: |
洪瑞君 Ruei-Jiun Hung |
---|---|
論文名稱: |
比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶 Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1 |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 尿嘧啶雙磷酸葡萄糖去氫酶 、綠膿桿菌 |
外文關鍵詞: | UDP-glucose dehydrogenase, Pseudomonas aeruginosa, PAO1 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尿嘧啶雙磷酸葡萄糖去氫酶 (UDP-glucose dehydrogenase, UGDH)催化尿嘧啶二磷酸葡萄糖 (UDP-glucose)氧化反應變成尿嘧啶雙磷酸葡萄糖醛酸(UDP-glucuronic acid),伴隨著產生兩分子的NADH。尿嘧啶雙磷酸葡萄糖醛酸扮演很多重要的生理角色,雖然其生化特性從人類到細菌已經被廣泛的研究,但是它的生化特性對於綠膿桿菌的生物意義目前仍不清楚。在這篇論文當中,我選殖、表現、以及純化兩個基因PA2022和PA3559的產物,證實此兩個基因的功能皆為尿嘧啶雙磷酸葡萄糖去氫酶。對於尿嘧啶雙磷酸葡萄糖而言,PA2022和PA355的Km分別是0.061 mM 和0.646 mM;對於另一個受質NAD+,PA2022和PA355的Km分別是0.379 mM and 1.003 mM。除此之外,PA3559對於尿嘧啶雙磷酸葡萄糖的專一性比PA2022高。PA2022除了會利用尿嘧啶雙磷酸葡萄糖之外,還會利用TDP-glucose和 UDP-N-acetylglucosamine。凝膠管柱層析實驗結果顯示PA2022和PA3559在水溶液中為雙體結構。我也構築綠膿桿菌尿嘧啶雙磷酸葡萄糖去氫酶的缺損株。其中PA2022和PA3559單一基因缺損株分別稱RJ 101與RJ102,而雙基因缺損株則稱RJ103。藉由比較野生株與突變株,可發現尿嘧啶雙磷酸葡萄糖去氫酶可能參與抗藥性和生物膜形成。RJ103缺損株對於抗生素chloramphenicol、cefotaxime和 ampicillin的敏感度增加;除此之外,它的爬行能力降低,形成生物膜的量和厚度都比野生株低。本研究顯示尿嘧啶雙磷酸葡萄糖去氫酶在綠膿桿菌中可藉由合成玻尿酸前趨物:尿嘧啶雙磷酸葡萄糖醛酸來調節胞外多醣體的合成與致病機轉。
UDP-glucose dehydrogenase (UGDH) catalyzes the NAD+-dependent twofold oxidation of UDP-glucose to yield UDP-glucuronic acid, a substrate for polysaccharide biosynthesis in many strains of pathogenic bacteria. Although the functions and kinetic properties of UGDH have been studied extensively in organisms ranging from bovine to bacteria; the biochemical properties of UGDH in Pseudomonas aeruginosa PAO1, an important pathogen, is still unknown. In this study, we have cloned, expressed, and affinity-purified the product of two open reading frame, PA2022 and PA3559, which have been annotated as nucleotide sugar dehydrogenase and determined their kinetic parameters, substrate specificities, and oligomeric states. The Km of PA2022 and PA3559 for UDP-glucose are 0.061 mM and 0.646 mM, while the Km of these two enzymes for NAD+ is 0.379 mM and 1.003 mM, respectively. Besides, the substrate specificity of PA2022 is quite different from that of PA3559 that is more specific to UDP-glucose. PA2022 can also utilize TDP-glucose and UDP-N-acetylglucosamine with the one-third velocity of UDP-glucose. The gel filtration data showed that both the UGDH are active as dimer in solution. Comparison between the wild type PAO1 and mutants revealed that the possible functions of the UGDHs in P. aeruginosa included the participation in antibiotic resistance and biofilm formation. The PA2022-PA3559 double mutant RJ103 was more susceptible than wild type PAO1 to chloramphenicol, cefotaxime, and ampicillin. Moreover, its twitching motility was impaired and it produced substantially thinner biofilm than wild type PAO1. The data suggests that the possible biological role of UGDH, which syntheses UDP-glucuronic acid as a precursor for hyaluronic acid, involves in the biosynthesis of critical exopolysaccharide components and may regulate P. aeruginosa pathogenesis.
1. Apicella, M. A., J. M. Griffiss, and H. Schneider. 1994. Isolation and characterization of lipopolysaccharides, lipooligosaccharides, and lipid A. Methods Enzymol 235:242-52.
2. Arrecubieta, C., E. Garcia, and R. Lopez. 1996. Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. J Bacteriol 178:2971-4.
3. Binari, R. C., B. E. Staveley, W. A. Johnson, R. Godavarti, R. Sasisekharan, and A. S. Manoukian. 1997. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124:2623-32.
4. Blumenkrantz, N., and G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acids. Anal Biochem 54:484-9.
5. Brown, M. R., J. H. Foster, and J. R. Clamp. 1969. Composition of Pseudomonas aeruginosa slime. Biochem J 112:521-5.
6. Burtnick, M. N., and D. E. Woods. 1999. Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob Agents Chemother 43:2648-56.
7. Campbell, R. E., S. C. Mosimann, I. van De Rijn, M. E. Tanner, and N. C. Strynadka. 2000. The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. Biochemistry 39:7012-23.
8. Crater, D. L., and I. van de Rijn. 1995. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J Biol Chem 270:18452-8.
9. Cross, A. S. 1990. The biologic significance of bacterial encapsulation. Curr Top Microbiol Immunol 150:87-95.
10. Dalessandro, G., and D. H. Northcote. 1977. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in pine and fir. Biochem J 162:281-8.
11. Darzins, A. 1993. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol 175:5934-44.
12. Deretic, V., J. F. Gill, and A. M. Chakrabarty. 1987. Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res 15:4567-81.
13. Diaz-Perez, A. L., A. N. Zavala-Hernandez, C. Cervantes, and J. Campos-Garcia. 2004. The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70:5102-10.
14. Domenico, P., S. Schwartz, and B. A. Cunha. 1989. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun 57:3778-82.
15. Fomsgaard, A., M. A. Freudenberg, and C. Galanos. 1990. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol 28:2627-31.
16. Garcia-Garcia, M. J., and K. V. Anderson. 2003. Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 114:727-37.
17. Gatzeva-Topalova, P. Z., A. P. May, and M. C. Sousa. 2005. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure 13:929-42.
18. Ge, X., L. C. Penney, I. van de Rijn, and M. E. Tanner. 2004. Active site residues and mechanism of UDP-glucose dehydrogenase. Eur J Biochem 271:14-22.
19. Griffith, C. L., J. S. Klutts, L. Zhang, S. B. Levery, and T. L. Doering. 2004. UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans. J Biol Chem 279:51669-76.
20. Hacker, U., X. Lin, and N. Perrimon. 1997. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124:3565-73.
21. Haerry, T. E., T. R. Heslip, J. L. Marsh, and M. B. O'Connor. 1997. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124:3055-64.
22. Hassett, D. J., H. P. Schweizer, and D. E. Ohman. 1995. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177:6330-7.
23. Hauser, S. C., J. C. Ziurys, and J. L. Gollan. 1984. Subcellular distribution and regulation of hepatic bilirubin UDP-glucuronyltransferase. J Biol Chem 259:4527-33.
24. Hitchcock, P. J., and T. M. Brown. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269-77.
25. Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77-86.
26. Hughes, J. E., J. Stewart, G. R. Barclay, and J. R. Govan. 1997. Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia. Infect Immun 65:4281-7.
27. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191-7.
28. Kereszt, A., E. Kiss, B. L. Reuhs, R. W. Carlson, A. Kondorosi, and P. Putnoky. 1998. Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase. J Bacteriol 180:5426-31.
29. Kochanowski, N., F. Blanchard, R. Cacan, F. Chirat, E. Guedon, A. Marc, and J. L. Goergen. 2006. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC. Anal Biochem 348:243-51.
30. Lin, C. S., N. T. Lin, B. Y. Yang, S. F. Weng, and Y. H. Tseng. 1995. Nucleotide sequence and expression of UDP-glucose dehydrogenase gene required for the synthesis of xanthan gum in Xanthomonas campestris. Biochem Biophys Res Commun 207:223-30.
31. McPhee, J. B., M. Bains, G. Winsor, S. Lewenza, A. Kwasnicka, M. D. Brazas, F. S. Brinkman, and R. E. Hancock. 2006. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 188:3995-4006.
32. Miller, W. L., C. Q. Wenzel, C. Daniels, S. Larocque, J. R. Brisson, and J. S. Lam. 2004. Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J Biol Chem 279:37551-8.
33. Moxon, E. R., and J. S. Kroll. 1990. The role of bacterial polysaccharide capsules as virulence factors. Curr Top Microbiol Immunol 150:65-85.
34. O'Toole, G. A., and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295-304.
35. Princivalle, M., and A. de Agostini. 2002. Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human. Int J Dev Biol 46:267-78.
36. Rajan, S., and L. Saiman. 2002. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect 17:47-56.
37. Rashid, M. H., and A. Kornberg. 2000. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:4885-90.
38. Rocchetta, H. L., L. L. Burrows, and J. S. Lam. 1999. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523-53.
39. Roden, L. 1980. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Publishing Corp., New York.
40. Roman, E. 2004. Studies on the Role of UDP-Glucose Dehydrogenase in Polysaccharide Biosynthesis. Doctoral thesis. Uppsala University.
41. Roman, E., I. Roberts, K. Lidholt, and M. Kusche-Gullberg. 2003. Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochem J 374:767-72.
42. Ryll, T., and R. Wagner. 1991. Improved ion-pair high-performance liquid chromatographic method for the quantification of a wide variety of nucleotides and sugar-nucleotides in animal cells. J Chromatogr 570:77-88.
43. Sambrook, J., and D. W. Russell. 2001. Molecular cloning: A laboratory manual, 3 ed. Cold Spring Harbor laboratory Press, Cold Spring Harbor, New York.
44. Seifert, G. J. 2004. Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277-84.
45. Sieberth, V., G. P. Rigg, I. S. Roberts, and K. Jann. 1995. Expression and characterization of UDPGlc dehydrogenase (KfiD), which is encoded in the type-specific region 2 of the Escherichia coli K5 capsule genes. J Bacteriol 177:4562-5.
46. Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/technology 1:784-791.
47. Snook, C. F., P. A. Tipton, and L. J. Beamer. 2003. Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in P. aeruginosa. Biochemistry 42:4658-68.
48. Todar, K. 2004, posting date. Todar's Online Textbook of Bacteriology [Online.]
49. Warren, G. H., and J. Gray. 1954. The depolymerization of bacterial polysaccharides by hyalyronidase preparations. J Bacteriol 67:167-70.
50. Warren, G. H., and J. Gray. 1955. Studies on the properties of a polysaccharide constituent produced by Pseudomonas aeruginosa. J Bacteriol 70:152-7.
51. Watson, D. A., and D. M. Musher. 1990. Interruption of capsule production in Streptococcus pneumonia serotype 3 by insertion of transposon Tn916. Infect Immun 58:3135-8.
52. Wessels, M. R., J. B. Goldberg, A. E. Moses, and T. J. DiCesare. 1994. Effects on virulence of mutations in a locus essential for hyaluronic acid capsule expression in group A streptococci. Infect Immun 62:433-41.