研究生: |
賴奕淳 Lai, Yi-Chun |
---|---|
論文名稱: |
利用可移動地標以機器學習為基礎機制的追蹤與定位 Tracking and Localization with Machine Learning-Based Mechanism by Moving Landmarks |
指導教授: |
陳文村
Chen, Wen-Tsuen |
口試委員: |
許健平
Sheu, Jang-Ping 王志宇 Wang, Chih-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 定位 、追蹤 |
外文關鍵詞: | Localization, Tracking |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
移動物體的追蹤在許多應用中是不可或缺的,例如行李自動追蹤和生物追蹤。基於地標的追蹤方法通常面臨著地標部署成本與所選無線技術準確性之間的權衡。在本文中,我們提出了一種基於低功耗藍牙(BLE)的移動物體追蹤系統,該系統使用配備多個天線的移動地標。低功耗藍牙的短訊號覆蓋範圍被地標的移動性所克服。在追蹤系統中,我們通過SVM模型識別的多天線的RSSI特徵來估計AoA和目標到移動地標的距離。然後,移動地標的追蹤策略是以目標的估計相對位置為基礎。我們在EcoBT和MediaTek LinkIt ONE開發板上實現了提出的系統。實驗結果顯示,在解析度為15度時,AoA的平均誤差小於1度,在解析度為0.5公尺時,距離的平均誤差小於0.1公尺。我們進一步進行了移動目標追蹤的實驗,以顯示所提出的系統的有效性。我們還觀察到,在移動目標追蹤中存在準確度和追蹤速度之間的權衡。
Moving object tracking is essential in many applications, such as self-tracking luggage and insect tracking. Landmark-based tracking methods usually face the tradeoff between cost in landmark deployment and accuracy of chosen wireless technology. In this thesis, we propose a Bluetooth Low Energy (BLE)-based moving object tracking system using moving landmarks equipped with multiple antennas. The short signal coverage of BLE is overcome by the mobility of landmarks. In the tracking system, we estimate the angle of arrival (AoA) and the distance from the target to the moving landmark by the pattern of RSSIs of multi-antennas recognized by the trained SVM model. The tracking strategy of the moving landmark is then based on the estimated relative location of the target. We implemented the proposed system on EcoBT and MediaTek LinkIt ONE development boards. The experiment results showed that the average error of AoA is less than 1 degree at the resolution of 15 degrees and the average error of distance is less than 0.1 m at the resolution of 0.5 m. We further conducted experiments on moving target tracking to show the effectiveness of the proposed system. We also observed that there exists a tradeoff between accuracy and tracking speed in moving target tracking.
[1] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global positioning system:
Theory and practice. Springer-Verlag, 1997.
[2] A. Thaljaoui, T. Val, N. Nasri, and D. Brulin, “BLE localization using RSSI measurements
and iRingLA,” in Proceedings of IEEE International Conference on Industrial
Technology (ICIT), 2015.
[3] R. Faragher and R. Harle, “Location Fingerprinting With Bluetooth Low Energy
Beacons,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 11,
pp. 2418–2428, 2015.
[4] T. K. Lai, A. Wang, C. M. Chang, H. M. Tseng, K. Huang, J. P. Li, W. C. Shih, and
P. H. Chou, “Demonstration abstract: An 8x8 mm2 Bluetooth Low Energy wireless
motion-sensing platform,” in Proceedings of ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), 2014.
[5] B. Campbell, J. Adkins, and P. Dutta, “Cinamin: A perpetual and nearly invisible
BLE Beacon,” in Proceedings of Next Generation Platforms for the Cyber-Physical
Internet, 2016.
[6] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, 27:1–27:27, 3 2011,
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[7] B. N. Hood and P. Barooah, “Estimating DoA From Radio-Frequency RSSI Measurements
Using an Actuated Reflector,” IEEE Sensors Journal, vol. 11, no. 2, pp. 413–
417, 2011.
[8] J. R. Jiang, C. M. Lin, and Y. J. Hsu, “Proceedings of Localization with Rotatable Directional
Antennas for Wireless Sensor Networks,” in Proceedings of International
Conference on Parallel Processing Workshops, 2010.
[9] J. R. Jiang, C. M. Lin, F. Y. Lin, and S. T. Huang, “ALRD: AoA localization with
RSSI differences of directional antennas for wireless sensor networks,” in Proceedings
of International Conference on Information Society (i-Society), 2012.
[10] M. Malajner, P. Planinsic, and D. Gleich, “Angle of Arrival Estimation Using RSSI
and Omnidirectional Rotatable Antennas,” IEEE Sensors Journal, vol. 12, no. 6,
pp. 1950–1957, 2012.
[11] A. U. Ahmed, M. T. Islam, and M. Ismail, “Estimating DoA From Radio Frequency
RSSI Measurements Using Multi-Element Femtocell Configuration,” IEEE Sensors
Journal, vol. 15, no. 4, pp. 2087–2092, 2015.
[12] F. Zafari and I. Papapanagiotou, “Enhancing iBeacon Based Micro-Location with
Particle Filtering,” in Proceedings of IEEE Global Communications Conference (GLOBECOM),
2015.
42
[13] J. Dong, Y. Xiao, Z. Ou, Y. Cui, and A. Yla-Jaaski, “Indoor Tracking Using Crowdsourced
Maps,” in Proceedings of ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), 2016.
[14] A. Belmonte-Hernández, G. Hernández-Peñaloza, F. Álvarez, and G. Conti, “Adaptive
Fingerprinting in Multi-Sensor Fusion for Accurate Indoor Tracking,” IEEE Sensors
Journal, vol. 17, no. 15, pp. 4983–4998, 2017.
[15] Z. Li, D. B. Acuña, Z. Zhao, J. L. Carrera, and T. Braun, “Fine-grained Indoor Tracking
by Fusing Inertial Sensor and Physical Layer Information in WLANs,” in Proceedings
of IEEE International Conference on Communications (ICC), 2016.
[16] H. Zou, Z. Chen, H. Jiang, L. Xie, and C. Spanos, “Accurate Indoor Localization and
Tracking Using Mobile Phone Inertial Sensors,WiFi and iBeacon,” in Proceedings of
IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 2017.
[17] K.-F. Ssu, C.-H. Ou, and H. C. Jiau, “Localization With Mobile Anchor Points in
Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, vol. 54,
no. 3, pp. 1187–1197, 2005.
[18] C. Y. Chang, T. L. Wang, and C. Y. Tung, “A Mobile Anchor Assisted Localization
Mechanism for Wireless Sensor Networks,” in Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC), 2014.
[19] C. H. Ou and K. F. Ssu, “Sensor Position Determination with Flying Anchors in
Three-DimensionalWireless Sensor Networks,” IEEE Transactions on Mobile Computing,
vol. 7, no. 9, pp. 1084–1097, 2008.
[20] Z. Gong, C. Li, F. Jiang, R. Su, R. Venkatesan, C. Meng, S. Han, Y. Zhang, S. Liu,
and K. Hao, “Design, Analysis, and Field Testing of an Innovative Drone-assisted
Zero-configuration Localization Framework for Wireless Sensor Networks,” IEEE
Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2017.
[21] M. D. Buhmann and M. D. Buhmann, Radial basis functions. Cambridge University
Press, 2003.
[22] Texas Instruments, CC2540, http://www.ti.com/product/CC2540, 2010.
[23] Antenova, http://www.antenova-m2m.com, 2001.
[24] MediaTek, LinkIt ONE, https://labs.mediatek.com/en/platform/linkitone,
2015.
[25] Microchip Technology Inc., MCP2515, http://www.microchip.com/wwwproducts/
en/en010406, 2016.
[26] DFRobot, Cherokey, https://www.dfrobot.com/product-896.html, 2015.
[27] Arduino, Arduino Uno, https://store.arduino.cc/usa/arduino-uno-rev3,
2014.
[28] M. O. A. Kalaa, W. Balid, N. Bitar, and H. H. Refai, “Evaluating Bluetooth Low
Energy in realistic wireless environments,” in Proceedings of IEEE Wireless Communications
and Networking Conference, 2016.
[29] M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of controller area network,”
Computing Control Engineering Journal, vol. 10, no. 3, 1999.