研究生: |
許芯瑜 Khor, Hsin-Yu |
---|---|
論文名稱: |
電子束對二硒化鎢及二硫化鎢電晶體特性的影響 Impact of Electron Beam to Tungsten Diselenide and Tungsten Disulfide Transistors |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
李奎毅
Lee, Kuei-Yi 林永昌 Lin, Yung-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 電子束微影 、電晶體 、二硒化鎢 、二硫化鎢 |
外文關鍵詞: | transistor, electron beam lithography, Tungsten Disulfide, Tungsten Diselenide |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過渡金屬硫族化物 (Transition -metal dichalcogenides, TMDCs)為二維層狀材料,可以單層穩定存在於環境中,而由於費米能階釘札的效應,金屬半導體接觸的好壞對元件效能的影響很大,而電子束微影被廣泛利用在製作元件電極中,然而電子束微影的過程中,電子束不可避免的會透過PMMA電子阻影響到所使用的通道材料,造成通道材料產生缺陷可能加強費米能階釘札的效應,為了探討電子束微影對金屬半導體接觸的影響,我們以二硫化鎢及二硒化鎢為通道材料製作了三種不同製程的金屬半導體接觸,分別是石墨烯接觸、光學微影及電子束微影的電晶體,並透過低溫量測探討其金屬半導體接觸特性,發現其會造成臨界電壓往正端偏移及次臨界擺幅的下降。
Electrical metal contact to two-dimensional material is crucial to device performance due to strong fermi level pinning. Since material may be damaged by electron beam lithography during the process, we try to look into how electron beam affect the material. By adding the area dose, electron beam might cause more defects on the material which cause fermi level pinning. We investigate how electron beam damage the material by comparing the transfer characteristic of Tungsten Diselenide and Tungsten Disulfide field effect transistor using photolithography and electron beam lithography with different area dose respectively.
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” PR, vol. 74, pp. 230–231, July 1948.
[2] logic, “https://computerhistory.org/revolution/digitallogic/12/273,” [3] transistor https://www.computerhistory.org/atchm/whoinventedthetransistor/.
[4] circuit https://www.allaboutcircuits.com/news/jackkilbyandtheworldfirstinte gratedcircuit/.
[5] revolution https://ethw.org/TransistorsandthComputerRevolution.
[6] moores https://www.extremetech.com/extreme/210872extremetechexplain swhatismooreslaw.
[7] finfet https://www.androidauthority.com/4nmprocessingnode812959/.
[8] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature, vol. 499, p. 419, July 2013.
[9] M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: A review of graphene,” Chem. Rev., vol. 110, pp. 132–145, Jan. 2010.
[10] application https:// www.sciencedirect.com/ science/ article/ pii/
S1369702116302917?via3Dihub.
[11] A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, “Phosphorene: from theory to applications,” Nature Reviews Materials, vol. 1, p. 16061, Aug. 2016.
[12] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watan abe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride sub strates for highquality graphene electronics,” Nature Nanotechnology, vol. 5, p. 722, Aug. 2010.
[13] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of mos2 mosfets,” ACS Nano, vol. 6, pp. 8563–8569, Oct. 2012.
[14] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two dimensional materials,” Nature Nanotechnology, vol. 9, p. 768, Oct. 2014.
[15] F. Schwierz, J. Pezoldt, and R. Granzner, “Twodimensional materials and their prospects in transistor electronics,” Nanoscale, vol. 7, no. 18, pp. 8261– 8283, 2015.
[16] M. Chhowalla, H. S. Shin, G. Eda, L.J. Li, K. P. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, p. 263, Mar. 2013.
[17] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. N. Abbas, M. Ge, M. Mecklenburg, and C. Zhou, “Reversible semiconductingtometallic phase transition in chemical vapor deposition grown monolayer wse2 and applica tions for devices,” ACS Nano, vol. 9, pp. 7383–7391, July 2015.
[18] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural prop erties,” Advances in Physics, vol. 18, pp. 193–335, May 1969.
[19] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures oftransition metal dichalcogenides: 2h mX2 semiconductors (m = mo, w; x = s, se, te),” PRB, vol. 85, p. 033305, Jan. 2012.
[20] H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, “Large area growth and electrical properties of ptype wse2 atomic layers,” Nano Lett., vol. 15, pp. 709–713, Jan. 2015.
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomi cally thin carbon films,” Science, vol. 306, p. 666, Oct. 2004.
[22] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Twodimensional atomic crystals,” Proc Natl Acad Sci US A, vol. 102, p. 10451, July 2005.
[23] J. D.Plummer, Silicon VLSITechnology. 2000. [24] J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang, Y.H. Chang, W.H. Chang, Y. Iwasa, T. Takenobu, and L.J. Li, “Largearea synthesis of highly crystalline wse2 monolayers and device applications,” ACS Nano, vol. 8, pp. 923–930, Jan. 2014.
[25] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on raman spectra in two
dimensional wse2,” PRB, vol. 88, p. 195313, Nov. 2013.
[26] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Al brecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and raman response ofmono layer mos2, mose2, and wse2,” Opt. Express, vol. 21, pp. 4908–4916, Feb. 2013.
[27] M. Kiguchi and K. Saiki, “Metalinduced gap states at insulator/metal inter faces,” Ejournal ofSurface Science and Nanotechnology, vol. 2, pp. 191– 199, Jan. 2004.
[28] J. Su, L. Feng, Y. Zhang, and Z. Liu, “Defect induced gap states in monolayer mos2 control the schottky barriers ofptmmos2 interfaces,” Appl. Phys. Lett., vol. 110, p. 161604, Oct. 2019.
[29] R. T. Tung, “Formation of an electric dipole at metalsemiconductor inter faces,” PRB, vol. 64, p. 205310, Nov. 2001.
[30] C. A. Mead and W. G. Spitzer, “Fermi level position at metalsemiconductor interfaces,” PR, vol. 134, pp. A713–A716, May 1964.
[31] . 伍國, 半導體元件物理學. 國立交通大學出版社, 2008.
[32] C. Kenney, K. C. Saraswat, B. Taylor, and P. Majhi, “Thermionic field emis sion explanation for nonlinear richardson plots,” IEEE Transactions on Elec tron Devices, vol. 58, no. 8, pp. 2423–2429, Aug.
[33] J. M. Larson and J. P. Snyder, “Overview and status of metal s/d schottky barrier mosfet technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048–1058, May.
[34] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta,
K. Wang, J. Gelatos, S. E. Mohney, and S. Datta, “Fermi level depinningand contact resistivity reduction using a reduced titania interlayer in nsilicon metalinsulatorsemiconductor ohmic contacts,” Appl. Phys. Lett., vol. 104, p. 112101, Oct. 2019.
[35] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett., vol. 105, p. 182103, Oct. 2019.
[36] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two dimensional semiconductors,” Nature Materials, vol. 14, p. 1195, Nov. 2015.
[37] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transitionmetal dichalcogenide semiconduc tors,” PRX, vol. 4, p. 031005, July 2014.
[38] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588– 1596, Feb. 2017.
[39] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial fermi level pinning at metalmos2 interfaces,” Nano Lett., vol. 14, pp. 1714–1720, Apr. 2014.
[40] Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan, “Approaching the schottkymott limit in van der waals metalsemiconductor junctions,” Nature, vol. 557, pp. 696–700, May 2018.
[41] W. M. Parkin, A. Balan, L. Liang, P. M. Das, M. Lamparski, C. H. Naylor, J. A.
RodríguezManzo, A. T. C. Johnson, V. Meunier, and M. Drndić, “Raman F. Li, F. Gao, M. Xu, X. Liu, X. Zhang, H. Wu, and J. Qi, “Tuning transport and photoelectric performance of monolayer mos2 device by e‐beam irradia tion,” Advanced Materials Interfaces, vol. 5, Mar. 2018.
[43] F. Giubileo, L. Iemmo, M. Passacantando, F. Urban, G. Luongo, L. Sun, G. Amato, E. Enrico, and A. Di Bartolomeo, “Effect of electron irradiation on the transport and field emission properties of fewlayer mos2 fieldeffect transistors,” J. Phys. Chem. C, vol. 123, pp. 1454–1461, Jan. 2019.
[44] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of highquality monolayer ws2 layers on sapphire and imaging its grain bound ary,” ACS Nano, vol. 7, pp. 8963–8971, Oct. 2013.
[45] H. Terrones, E. D. Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. T. Nguyen, A. L. Elías, T. E. Mallouk, L. Balicas, M. A. Pimenta, and M. Terrones, “New first order ramanactive modes in few layered transition metal dichalcogenides,” Scientific Reports, vol. 4, p. 4215, Feb. 2014.
[46] W. Shi, M.L. Lin, Q.H. Tan, X.F. Qiao, J. Zhang, and P.H. Tan, “Raman and photoluminescence spectra oftwodimensional nanocrystallites ofmonolayer ws2and wse2,” 2D Materials, vol. 3, p. 025016, Apr. 2016.
[47] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on ni and cu by carbon isotope labeling,” Nano Lett., vol. 9, pp. 4268–4272,
Dec. 2009.
[48] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of largearea graphene films from metalcarbon melts,” Journal of Applied Physics, vol. 108, p. 094321, Nov. 2019.
[49] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, pp. 51–87, Apr. 2009.
[50] Z. Wu, Z. Luo, Y. Shen, W. Zhao, W. Wang, H. Nan, X. Guo, L. Sun, X. Wang, Y. You, and Z. Ni, “Defects as a factor limiting carrier mobility in wse2: A spectroscopic investigation,” Nano Research, vol. 9, pp. 3622– 3631, Dec. 2016.
[51] Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect ac tivated photoluminescence in wse2 monolayer,” J. Phys. Chem. C, vol. 121, pp. 12294–12299, June 2017.
[52] B. Radisavljevic and A. Kis, “Mobility engineering and a metalinsulator tran sition in monolayer mos2,” Nature Materials, vol. 12, pp. 815–820, Sept. 2013.
[53] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for mos transistors,” in 2000 International Semiconduc tor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486),
vol. 1, pp. 371–374 vol.1, 101.