簡易檢索 / 詳目顯示

研究生: 陳逸凡
Chen, Yi-Fan
論文名稱: 異向性平板中邊緣開口之三維彈塑性應力分析
Three-Dimensional Elastoplastic Stress Analysis of Notched Anisotropic Plates
指導教授: 蔣長榮
Chiang, Chun-Ron
口試委員: 葉孟考
Yeh, Meng-Kao
蕭國模
Hsiao, Kuo-Mo
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 127
中文關鍵詞: 異向性應力集中彈塑性
外文關鍵詞: anisotropy, stress concentration, elastoplastic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文針對含邊緣開口的異向性(Anisotropic)平板,在無窮遠處承受單軸拉應力(Uniaxial Tension Stress)時,利用有限單元法分析板之半厚度與開口半徑在不同比例下,探討應力集中與基材損傷區(Matrix Damage Zone)成長的關係。
    首先,在彈性範圍內,假設在二維條件下,以『ANSYS』模擬之結果與文獻試做比較,驗證模擬值。進而考慮在三維彈塑性條件下等向性(Isotropic)平板應力集中現象與塑性區(Plastic Zone)成長關係。接著分析纖維加強之異向性平板在施力方向與纖維方向的夾角( , )不同時,探討應力集中現象與基材損傷區之間的關係。
    本文發現在等向性材料時應力集中因子對於塑性區成長有顯著的關係,而在異向性材料中施力方向與纖維方向的夾角與基材損壞區成長有明顯的相關。

    關鍵字:異向性、應力集中、彈塑性


    Abstract
    In this paper, we use the notched anisotropic plates at infinity under uniaxial tensile stress, and we use the finite element method to analyze the relationship between stress concentration and the matrix damage zone growth according to different proportions of plate thickness and the opening radius.
    First, we compare the result of “ANSYS” simulation under the assumed two-dimensional condition with the literature in order to validate simulation value. Second, we consider the relationship between isotropic stress concentration plate and plastic zone growth under the condition of three-dimensional elastoplastic. Finally, we analyze the relationship between stress concentration and the substrate damage zone, according to different angles between the force direction and fiber orientation of the anisotropic fiber reinforced plate.
    We found that in isotropic materials the stress concentration factor has a significant influences on plastic zone growth. In anisotropy material, the angle between force direction and fiber orientation are closely related to substrate damage zone growth.

    Keywords: anisotropy, stress concentration, elastoplastic

    目錄 頁次 摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VII 第一章 緒論 1 1.1緒論 1 1.2文獻回顧 2 第二章 基本理論 5 2.1彈塑性力學簡化模型 5 2.2降伏準則 6 2.2-1 Tresca降伏準則 6 2.2-2 von Mises降伏準則 7 2.2-3 Hill降伏準則 8 2.3硬化規則 10 2.3-1 等向性硬化規則 10 2.4應力集中因子 11 第三章 複合材料力學 12 3.1異向性彈性理論 12 第四章 有限單元法及工程模擬分析軟體『ANSYS』 14 4.1有限單元法 14 4.1-1 有限單元法基本理論 14 4.1-2 等參數單元 18 4.1-3 高斯積分法 20 4.2『ANSYS』軟體簡介 21 4.3『ANSYS』非線性分析 22 第五章 問題分析 23 5.1問題描述 23 5.2建立模型 24 5.2-1 建立二維平板模型 24 5.2-2 建立三維平板模型 24 5.3模型收斂性評估 25 5.3-1 二維平板模型分析 25 5.3-2三維平板模型分析 26 5.4模型分析與驗證 27 第六章 結果與討論 28 第七章 結論 31 參考文獻 33

    參考文獻
    1. G. Kirsch, “Theorie der elastizitat and die beduerfnisse der festigkeitslehre﹐” Z﹒Vereines Deutscher Ing. 42﹐ pp. 797-807, 1898.
    2. A. E. Green, “Three-dimensional stress system in isotropic plates,” I. Trans. R. Soc. London, Ser. A. 240, pp. 285-561, 1948.
    3. J. B. Alblas, “Theorie van de driedimensionale spanningstoestand in een doorboovde plaate,” Dissertation, Technische, Hogeschool Delft, H. J. Pairs, Amsterdam, 1957.
    4. E. S. Folias, J. J. Wang, “On the three-dimensional stress field around a circular hole in a plate of arbitrary thickness,” Computational Mechanics, 6, pp. 379-391, 1990.
    5. A. Kato, “Design equation for stress concentration factor of notched strips and grooved shaft,” J. Strain Analysis, Vol. 26, NO.1, pp. 21-28, 1992.
    6. Z. Yang, C. B. Kim, C. Cho, H. G. Beom, “The concentration of stress and strain in finite thickness elastic plate containing a circular hole,” International Journal of Solids and Structures, 45, pp. 713-731, 2008.
    7. F. Li, “Investigation on three-dimensional stress concentration of LY12-CZ plate with two equal circular holes under tension,” Materials Science and Engineering, A483/A484, pp. 474-476, 2008.
    8. S. G. Lekhnitskii﹐Anisotropic Plate﹐Gorden and Breach﹐New York﹐1968.
    9. B. R. Pipes, N. J. Pagano, “Interlaminar stresses in composite materials under uniform axial extension,” Journal of Composite Materials, Vol. 4, pp. 538-548, 1980.
    10. W. Yao, X. Yu, “Stress concentration factor for an orthotropic finite-width plate containing elliptical edge notches,” Composites science and Technology , 41, pp. 47-53, 1991.
    11. 朱國良,“異向性材料表面微小缺陷的應力集中因子,”國立清華大學動力機械所碩士論文, 1995.
    12. 趙浩良,“有限寬度異向性平板含邊緣缺陷之應力集中問題,”國立清華大學動力機械所碩士論文, 1997.
    13. A. Parmar, P. B. Mellor, “Plastic expansion of a circular hole in sheet metal subjected to biaxial tensile stress,” International Journal of Mechanical Sciences, 20, pp. 707-720, 1978.
    14. 葉智超,“穿孔厚板之三維彈塑性應力分析,”國立清華大學動力機械所碩士論文, 2010.
    15. W. Johnson, P. B. Mellor, Engineering Plasticity, Ellis Horwood Ltd, Chichester, 1985.
    16. W. Prager, Jr. P. G. Hodge, Theory of perfectly plastic solids, Wiley, New York, 1951.
    17. R. F. Gibson, Principle of Composite Material Mechanics, McGraw-Hill, Inc.International Editions, 1994.
    18. R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and application of finite element analysis, Wiley, New York, 2002.
    19. 劉晉奇, 褚晴輝,“有限元素分析與ANSYS的工程應用,”滄海書局, 2006.
    20. 李輝煌,“ANSYS 工程分析:基礎與觀念,”高立圖書有限公司, 2005.
    21. http://www.matweb.com/search/DataSheet.aspx?MatGUID=0cd1edf33ac145ee93a0aa6fc666c0e0
    22. E. Z. Hu, C. Soutis, E. C. Edge, “Interlaminar stresses in composite laminates with a circular hole,” Composite Structures, 37, pp. 223-232, 1997.
    23. Z. Huang, “The mechanical properties of composites reinforced with woven and braided fabrics,” Composites science and Technology, 60, pp. 479-498, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE