研究生: |
陳逸凡 Chen, Yi-Fan |
---|---|
論文名稱: |
異向性平板中邊緣開口之三維彈塑性應力分析 Three-Dimensional Elastoplastic Stress Analysis of Notched Anisotropic Plates |
指導教授: |
蔣長榮
Chiang, Chun-Ron |
口試委員: |
葉孟考
Yeh, Meng-Kao 蕭國模 Hsiao, Kuo-Mo |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 異向性 、應力集中 、彈塑性 |
外文關鍵詞: | anisotropy, stress concentration, elastoplastic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文針對含邊緣開口的異向性(Anisotropic)平板,在無窮遠處承受單軸拉應力(Uniaxial Tension Stress)時,利用有限單元法分析板之半厚度與開口半徑在不同比例下,探討應力集中與基材損傷區(Matrix Damage Zone)成長的關係。
首先,在彈性範圍內,假設在二維條件下,以『ANSYS』模擬之結果與文獻試做比較,驗證模擬值。進而考慮在三維彈塑性條件下等向性(Isotropic)平板應力集中現象與塑性區(Plastic Zone)成長關係。接著分析纖維加強之異向性平板在施力方向與纖維方向的夾角( , )不同時,探討應力集中現象與基材損傷區之間的關係。
本文發現在等向性材料時應力集中因子對於塑性區成長有顯著的關係,而在異向性材料中施力方向與纖維方向的夾角與基材損壞區成長有明顯的相關。
關鍵字:異向性、應力集中、彈塑性
Abstract
In this paper, we use the notched anisotropic plates at infinity under uniaxial tensile stress, and we use the finite element method to analyze the relationship between stress concentration and the matrix damage zone growth according to different proportions of plate thickness and the opening radius.
First, we compare the result of “ANSYS” simulation under the assumed two-dimensional condition with the literature in order to validate simulation value. Second, we consider the relationship between isotropic stress concentration plate and plastic zone growth under the condition of three-dimensional elastoplastic. Finally, we analyze the relationship between stress concentration and the substrate damage zone, according to different angles between the force direction and fiber orientation of the anisotropic fiber reinforced plate.
We found that in isotropic materials the stress concentration factor has a significant influences on plastic zone growth. In anisotropy material, the angle between force direction and fiber orientation are closely related to substrate damage zone growth.
Keywords: anisotropy, stress concentration, elastoplastic
參考文獻
1. G. Kirsch, “Theorie der elastizitat and die beduerfnisse der festigkeitslehre﹐” Z﹒Vereines Deutscher Ing. 42﹐ pp. 797-807, 1898.
2. A. E. Green, “Three-dimensional stress system in isotropic plates,” I. Trans. R. Soc. London, Ser. A. 240, pp. 285-561, 1948.
3. J. B. Alblas, “Theorie van de driedimensionale spanningstoestand in een doorboovde plaate,” Dissertation, Technische, Hogeschool Delft, H. J. Pairs, Amsterdam, 1957.
4. E. S. Folias, J. J. Wang, “On the three-dimensional stress field around a circular hole in a plate of arbitrary thickness,” Computational Mechanics, 6, pp. 379-391, 1990.
5. A. Kato, “Design equation for stress concentration factor of notched strips and grooved shaft,” J. Strain Analysis, Vol. 26, NO.1, pp. 21-28, 1992.
6. Z. Yang, C. B. Kim, C. Cho, H. G. Beom, “The concentration of stress and strain in finite thickness elastic plate containing a circular hole,” International Journal of Solids and Structures, 45, pp. 713-731, 2008.
7. F. Li, “Investigation on three-dimensional stress concentration of LY12-CZ plate with two equal circular holes under tension,” Materials Science and Engineering, A483/A484, pp. 474-476, 2008.
8. S. G. Lekhnitskii﹐Anisotropic Plate﹐Gorden and Breach﹐New York﹐1968.
9. B. R. Pipes, N. J. Pagano, “Interlaminar stresses in composite materials under uniform axial extension,” Journal of Composite Materials, Vol. 4, pp. 538-548, 1980.
10. W. Yao, X. Yu, “Stress concentration factor for an orthotropic finite-width plate containing elliptical edge notches,” Composites science and Technology , 41, pp. 47-53, 1991.
11. 朱國良,“異向性材料表面微小缺陷的應力集中因子,”國立清華大學動力機械所碩士論文, 1995.
12. 趙浩良,“有限寬度異向性平板含邊緣缺陷之應力集中問題,”國立清華大學動力機械所碩士論文, 1997.
13. A. Parmar, P. B. Mellor, “Plastic expansion of a circular hole in sheet metal subjected to biaxial tensile stress,” International Journal of Mechanical Sciences, 20, pp. 707-720, 1978.
14. 葉智超,“穿孔厚板之三維彈塑性應力分析,”國立清華大學動力機械所碩士論文, 2010.
15. W. Johnson, P. B. Mellor, Engineering Plasticity, Ellis Horwood Ltd, Chichester, 1985.
16. W. Prager, Jr. P. G. Hodge, Theory of perfectly plastic solids, Wiley, New York, 1951.
17. R. F. Gibson, Principle of Composite Material Mechanics, McGraw-Hill, Inc.International Editions, 1994.
18. R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and application of finite element analysis, Wiley, New York, 2002.
19. 劉晉奇, 褚晴輝,“有限元素分析與ANSYS的工程應用,”滄海書局, 2006.
20. 李輝煌,“ANSYS 工程分析:基礎與觀念,”高立圖書有限公司, 2005.
21. http://www.matweb.com/search/DataSheet.aspx?MatGUID=0cd1edf33ac145ee93a0aa6fc666c0e0
22. E. Z. Hu, C. Soutis, E. C. Edge, “Interlaminar stresses in composite laminates with a circular hole,” Composite Structures, 37, pp. 223-232, 1997.
23. Z. Huang, “The mechanical properties of composites reinforced with woven and braided fabrics,” Composites science and Technology, 60, pp. 479-498, 2000.