研究生: |
李 翊 Lee, Yi |
---|---|
論文名稱: |
發展可調式電磁聚焦透鏡及校準偏轉器應用於桌上型電子顯微鏡 Development of the Tunable Condenser lens and Alignment Deflector in Tabletop Electron Microscope |
指導教授: |
陳福榮
Chen, Fu-Rong 曾繁根 Tseng, Fan-Gamg |
口試委員: |
歐陽汎怡
Ouyang, Fan-Yi 蘇紘儀 Su, Hong-Yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 電子顯微鏡 、掃描式電子顯微鏡 、桌上型電子顯微鏡 、校準偏轉器 、電磁透鏡 、電子光學 |
外文關鍵詞: | Electron microscope, Scanning Electron microscope, Tabletop Electron microscope, Alignment Deflector, Electromagnetic Lens, Electron Optics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在科技蓬勃發展的年代,各式分析儀器均逐漸朝向微型化、低成本、便利地趨勢發展。桌上型的電子顯微鏡也在近年來走向商業化。現有桌上型掃描式電子顯微鏡利用永磁作為聚焦透鏡來達到系統微型化的目的,但微型化的同時卻也犧牲可調整的特性,在不同加速電壓與工程上都會導致無可避免的缺陷。另一方面傳統立地式電鏡利用電磁線圈作為聚焦透鏡在不同加速電壓下調整強度來維持電子光學系統的特性不變,然而在產生相同聚焦能力條件下,傳統電磁線圈所需要的體積遠大於永久磁鐵。在本論文中,我們提出一個新型電磁聚焦透鏡模組,使此一透鏡模組在體積上比現有永磁透鏡體積小的同時,在1kV-15kV加速電壓下維持全系統光學性質可以做調整。
另一方面,為了有效校準電子束準直性,我們也發展了偏轉器來精準校正電子束的的軌跡來達到更好的解析度及輝度,有別於以往在空間限制下,只能利用機械式調光系統來校準電子束準直性的缺點。
最後,我們也成功利用開發出的新型透鏡拍攝出掃描式電鏡的影像。在本論文中,我們將提出理論及設計基礎來實現所需要滿足的透鏡條件。從模擬結果可以知道,藉由適當的透鏡及偏轉器設計,可調式透鏡能補償傳統電磁透鏡磁通量密度不足,以及永久磁鐵缺乏的可調整的缺點,此一模組可以產生比原來更小的縮小倍率並維持電子束斑在0.5奈米以下。
With the advance of science and technology, all kinds of analytical instruments are gradually developed into miniaturization, low cost and convenience. The tabletop Electron Microscopes (tabletop EMs) have been commercialized in the recent years. A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage and it would be difficult to adjust if the permanent magnets decline after a long time operating. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larer. Here, we propose a tunable condenser lens for a tabletop SEM that uses a new design of electromagnetic coils. The overall dimensions of the newly designed lens are less than the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV.
On the other hand, in order to increase the alignment precision of the beam, here we integrate a pair of deflector with the tunable condenser lens to align electron beam. Also maintaining the compact column volume. An deflector is added in our desktop system between the anode and the condenser lens allows for more electron beam pass through the lens system to improve the signal/ noise ratio at the image plane.
Finally we success using the new type electromagnetic lens taking an image in tabletop scanning electron microscope. In this paper, we will propose theory and the basic of design to achieve the lens condition. According to the result of simulation, by the suitable design of lens and deflector, tunable lens can compensate the insufficient magnetic flux density of the traditional electromagnetic lens and the untunable defect. And also align the beam more precision than the general tabletop EM. This module can produce a smaller reduction ratio than the original and maintain the electron beam spot below 0.5 nm
[1]https://www.thoughtco.com/history-of-the-microscope-1992146電子顯微鏡發展史.
[2]https://en.wikipedia.org/wiki/Electron_microscope電子顯微鏡發展史
[3]張維祐, 曾英碩, 方建閔, 陳福榮, 新世代桌上型電子顯微鏡的設計與製作, 科儀新知, (2013) 4-13.
[4]H.H. Rose, Geometrical charged-particle optics, Springer, 2009.
[5]Munro's Lecture Note.
[6]張維祐, 陳福榮, Development of the Desktop Aberration-Corrected Scanning Transmission Electron Microscope.
[7]Jan Myrheim, Lars Bugg, A fast runge-kutta method for fitting tracks in magnetic field, 1979.
[8]J. Orloff, Charged Particle Optics, Wiley Online Library, 2009.
[9]華中一, 顧昌鑫, 電子光學, 復旦大學出版社, 1990.
[10]應根裕,電子光學,亞東書局,1989.
[11]B. Buijsse, Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens, in, Google Patents, 2006.
[12]Peter Hawkes, Erwin Kasper, Principles of Electron Optics, Volume 1: Basic geometrical optics, 31. 2017.
[13] COMSOL multiphysics software. http://www.comsol.com/papers-presetations
[14]Jan Bart LePoole, Nassulaan, Deleft, Netherlands, Permanent lens system,US 3,812,365, 1974.
[15]Bart Buijsse, Theodorus Hubertus Josephhus, Bisschop, Theo Meuwese, Apparatus With Permanent magnetic lenses, US 7,064,325, 2006.
[16]TESCAN, Triglavtm UHR column, 2015.
[17]W.-Y. Chang, F.-R. Chen, Wide-range tunable magnetic lens for tabletop electron microscope, Ultramicroscopy, 171 (2016) 139-145.
[18]Theodore L.Bergman, Frank P.Incropera, Adrenne S.Lavine, David P.DeWitt, Introduction to Heat Transfer,2011.
[19]John Rodenburgm, Understanding Transmission Electron Microscope Alignment: an introduction to shift and tilt, 2004.
[20]Peter Hawkes, Erwin Kasper, Principles of Electron Optics, Volume 1 Basic geometrical optics, 403.
[21]R. Brydson, Aberration-corrected analytical transmission electron microscopy, John Wiley & Sons, 2011.
[22]H. Rose, Correction of aperture aberrations in magnetic systems with threefold symmetry, Nuclear Instruments and Methods in Physics Research, 187 (1981) 187-199.
[23]H. Rose, Prospects for aberration-free electron microscopy, Ultramicroscopy, 103(2005)1-6.
[24]Bc. VIKTOR BADIN, Electrostatic Defection and Correction systems
[25]http://www.globalsino.com/EM/page4314.html, in.
[26]陳福榮, 帶電粒子束設計與應用, 清華大學, 2014.
[27]W.-Y. Chang, F.-R. Chen, T.-H. Lee, T.-W. Huang, Desktop electron microscope and wide range tunable magnetic lens thereof, in, Google Patents, 2016.
[28]Mamoru Nakasuji, Yokohama, Japan, manrfacturing method for electrostatic deflector, USOO6125522A, 2000.
[29]Tai-Hon P Chang, Foster City; Marian Mankos, San Francisco; Lawrence P Muray, soraga, all of CA (US); Ho-Seob Kim, Asan (KR); Kim Y Lee, Fremont, CA (US), electrostatic alignment of a charged particle beam, US 6,288,401 B1, 2011.
[30] Electron Beam Deflector With Magnetic Correction Field And Incorporated Auxiliary Magnetic shielding, US Patent, 5,194,776, 1993.
[31]J.Lepoole, Permanent magnet lens system, in, Goole Patents, 1974.
[32]A. Khursheed, J.T. Thong, J. Phang, I. Ong, Miniature scanning electron microscope design based upon the use of permanent magnets, in: Optical Science, Engineering and Instrumentation'97, International Society for Optics and Photonics, 1997, pp. 175-184.