簡易檢索 / 詳目顯示

研究生: 游定書
Yu, Ting-Shu
論文名稱: 紅熒烯與肽菁銅混合有機薄膜之物性量測與電晶體之應用
Mixed Organic Thin Films of Copper Phthalocyanine and Rubrene: Characterization and Transistor Application
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 黃振昌
張瑞芬
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 135
中文關鍵詞: 肽菁銅紅熒烯有機場效電晶體混合式薄膜
外文關鍵詞: copper phthalocyanine, rubrene, OFET, mixed thin film
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用混合式蒸鍍有機薄膜的概念,選擇單晶態下具有最高電傳效益的紅熒烯(rubrene)與易形成晶性有機薄膜的肽菁銅(CuPc),於兩種修飾層分子上製備混合式結構的薄膜。透過原子力顯微鏡(AFM)、X光光電子能譜(XPS)、X光繞射(XRD)與近緣X光吸收細微結構光譜術(NEXAFS)對此種混合薄膜的表面形貌、薄膜中分子個數組成比例、晶相結構與分子位向等方面進行探討。以歸結出紅熒烯與肽菁銅在混合過程中的成長模式,由成長模式來探討元件的效能表現。
    由XPS的量測結果發現此混合式薄膜近表層的分子個數組成大致維持一固定比例,表示此兩分子非以混合均勻的結構存在。同時透過XRD的分析了解混合式薄膜,未生成新的晶相結構,表示此兩種分子無法形成任意比例的新晶相結構。由NEXAFS量測結果中發現肽菁銅分子於兩種修飾層上的成長具有不同的分子變化,以三氯十八矽烷(OTS)為修飾層而言,肽菁銅分子在高比例紅熒烯混合下,會有分子傾角增大的情形;而以4-丁基苯基三氯矽烷(4-PBTS)為修飾層分子的話,能維持住肽菁銅分子原本的傾角。當薄膜表層以一固定混合比例存在時,其餘分子往底層沉降之後,底層形貌發生了變化,令上層混合薄膜內晶相結構受到影響。對OTS為修飾層而言,其底層形貌屬於非晶相的不平整且凌亂結構,致使上層薄膜晶相受到削弱。另以4-PBTS為修飾分子而論,底層是形貌相對平整且非完全凌亂的結構,故可允許上層混合薄膜中的晶相結構受底層的干擾情形較少,對於晶性與分子環面的傾角維持相對容易。
    透過以混合有機薄膜製成場效電晶體後的電性量測結果,發現以4-PBTS為修飾層的元件效能優於以OTS修飾者。此時透過AFM影像上的分析,可發現以4-PBTS作基材修飾的元件,具有的條狀特徵橫截寬度較大,表示晶體尺寸於此基材上有增大的效果,同時於此種基材上所得到各種混合比例中平均載子遷移率最高者可達5.9×10–2 cm2V–1s–1。此遷移率同時高於以同樣基材所製成肽菁銅薄膜元件的效能表現,表示以此混合方式製備的肽菁銅與紅熒烯混合薄膜,相對於二種分子中的任一種更適合於追求元件效能上的應用。


    Mixed organic semiconducting thin films were prepared by vacuum-depositing copper phthalocyanine (CuPc) and rubrene of different mixing ratio onto oxide-terminated Si(100) wafers that were pre-modified with self-assembled monolayer (SAM) of either octadecyltrichlorosilane (OTS) or 4-phenylbutyltrichlorosilane (4-PBTS). The thin films were characterized by atomic force microscopy (AFM) and various synchrotron-based techniques such as x-ray photoemission spectroscopy (XPS), x-ray diffraction (XRD), and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy to obtain the information about the thin films in various aspects such as electronic structure, morphology, crystallinity, averaged molecular orientation, etc.
    The out-of-plane XRD data show that all the mixed films are composed of CuPc in predominately crystalline from and rubrene in exclusively amorphous form. More informative structural change can be obtained by examining grazing incidence x-ray diffraction (GIXD) images. For pure CuPc film, the a-b plane of CuPc crystallite is found to be parallel to the substrate surface. For the films of increasing rubrene percentage, the CuPC crystallite becomes tilted away from the substrate surface, forming elongated diffraction spots. For the mixed film of the highest rubrene percentage (90%), CuPc crystallites decrease in size, lose surface registry, and become powder-like samples, producing characteristic powder-diffraction rings. In consistence with the structural change documented by x-ray diffraction data, the average tilt angle of CuPc molecules, measured from the surface, also decreases dramatically by up to 10°, as recorded by NEXAFS data. Moreover, there seems to be very little chemical interaction between CuPc and rubrene molecules so as to effect observable changes in XPS N 1s spectra and N K-edge NEXAFS spectra (incidence angle of 55°) for CuPc of different mixed films.
    Organic field effect transistors based on the aforementioned mixed semiconducting films were fabricated. For mixed-film OFET, a modest mobility of at least 2 × 10–2 cm2/Vs can all be obtained, with the best value of 5.9×10–2 cm2/Vs obtained for the mixed film of 75% CuPc+25 % rubrene grown on 4-PBTS substrate. Comparing the AFM images with mobility data, we found that a larger width in the characteristic CuPc features in AFM image seems to give better electrical performance, suggesting a beneficial effect exerted by the larger CuPC grains.

    第一章 序論 1 1-1 有機薄膜電晶體之發展史 1 1-2 紅熒烯(rubrene)–最受注目的有機半導體材料 4 1-3 肽菁銅(copper phthalocyanine,CuPc) 6 1-4 混合式有機半導體薄膜之研究與電子學上之應用 9 1-5 研究動機與目的 15 第二章 實驗原理與技術背景簡述 17 2-1 同步輻射光源(Synchrotron Radiation Source) 17 2-2 有機薄膜場效電晶體(Organic Field Effect Transistors) 20 2-2-1 有機場效電晶體架構之簡介 20 2-2-2 有機場效電晶體之工作原理 21 2-2-3 有機場效電晶體之電流與電壓關係 25 2-3 近緣X光吸收細微結構光譜術 (Near-edge X-ray absorption fine structure, NEXAFS) 28 2-3-1 NEXAFS光譜之原理 28 2-3-2 NEXAFS量測方法 35 2-4 X光光電子能譜 (X-ray Photoemission Spectroscopy,XPS) 41 2-5 X光繞射(X-ray Diffraction,XRD) 46 2-6 原子力顯微鏡 (Atomic Force Microscope,AFM)原理 49 第三章 實驗藥品、儀器與實驗步驟 51 3-1 實驗藥品 51 3-2 實驗儀器 53 3-3 元件基材前置處理 55 3-4 自組裝薄膜成長 56 3-5 真空蒸鍍有機薄膜電晶體 57 3-5-1 真空蒸鍍系統 57 3-5-2 混合式有機薄膜共蒸鍍比例調控 59 3-5-3 混合式有機薄膜製備流程 61 3-5-4 蒸鍍金屬電極 62 3-6 量測有機薄膜電晶體元件之程序 63 3-7 原子力顯微鏡之量測 65 3-8 超高真空環境與樣品傳送流程 66 3-8-1 超高真空環境之達成 66 3-8-2 超高真空系統中傳送樣品 67 3-8-3 超高真空系統中之各項儀器 68 3-9 X光光電子能譜(XPS)之量測 70 3-10 近緣X光吸收細微結構(NEXAFS)之量測 71 3-10-1 部分電子產率PEY之量測程序 71 3-10-2 NEXAFS之能量校正 73 第四章 實驗結果與討論 75 4-1 混合式薄膜樣品之表面形貌分析 75 4-2 XPS對混合式樣品內各成份之定量分析 82 4-3 由NEXAFS分析混合式薄膜之分子位向 87 4-4 垂直平面向(out-of-plane)X光繞射結果分析 95 4-5 平面內(in-plane)低掠角入射X光繞射(GIXD)結果分析 104 4-6 量測混合式薄膜電晶體之效能 110 4-7 討論 124 第五章 結論 128 第六章 參考資料 130

    1. Thompson, S. E.; Parthasarathy, S. Mater. Today 2006, 9, 20.
    2. Dimitrakopoulos, C. D.; Mascaro, D. J. IBM J. Res. Dev. 2001, 45, 11.
    3. Forrest, S. R. Nature 2004, 428, 911.
    4. Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Haase, M. A.; Vogel, D. E.; Theiss, S. D. Chem. Mater. 2004, 16, 4413.
    5. Electronics Lab http://www.electronics-lab.com/blog/?p=18012
    6. Farchioni, R.; Grosso, G. Organic Electronic Materials; Springer: Berlin, 2001.
    7. Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers; 2nd ed.; Oxford University Press, 1999.
    8. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
    9. Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Nano Lett. 2008, 8, 2806.
    10. Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644.
    11. Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Appl. Phys. Lett. 2007, 90.
    12. Zeis, R.; Besnard, C.; Siegrist, T.; Schlockermann, C.; Chi, X. L.; Kloc, C. Chem. Mater. 2006, 18, 244.
    13. Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Nature 2006, 444, 913.
    14. Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J. A.; Gershenson, M. E. Phys. Rev. Lett. 2004, 93.
    15. Podzorov, V.; Sysoev, S. E.; Loginova, E.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003, 83, 3504.
    16. Sakamoto, G.; Adachi, C.; Koyama, T.; Taniguchi, Y.; Merritt, C. D.; Murata, H.; Kafafi, Z. H. Appl. Phys. Lett. 1999, 75, 766.
    17. Käfer, D.; Ruppel, L.; Witte, G.; Wöll, C. Phys. Rev. Lett. 2005, 95, 166602.
    18. Miwa, J. A.; Cicoira, F.; Bedwani, S. p.; Lipton-Duffin, J.; Perepichka, D. F.; Rochefort, A.; Rosei, F. J. Phys. Chem. C 2008, 112, 10214.
    19. Park, S. W.; Hwang, J. M.; Choi, J. M.; Hwang, D. K.; Oh, M. S.; Kim, J. H.; Ima, S. Appl. Phys. Lett. 2007, 90.
    20. Li, Z.; Du, J.; Tang, Q.; Wang, F.; Xu, J.-B.; Yu, J. C.; Miao, Q. Adv. Mater. 2010, 22, 3242.
    21. Chaure, N. B.; Cammidge, A. N.; Chambrier, I.; Cook, M. J.; Cain, M. G.; Murphy, C. E.; Pal, C.; Ray, A. K. Sci. Technol. Adv. Mater. 2011, 12.
    22. Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120, 207.
    23. Fedoruk, G. G.; Sagaidak, D. I.; Misevich, A. V.; Pochtenny, A. E. Sens. Actuators, B 1998, 48, 351.
    24. Reinot, T.; Kim, W. H.; Hayes, J. M.; Small, G. J. J. Opt. Soc. Am. B-Opt. Phys. 1997, 14, 602.
    25. Zeis, R.; Siegrist, T.; Kloc, C. Appl. Phys. Lett. 2005, 86, 022103.
    26. Nonaka, T.; Nakagawa, Y.; Mori, Y.; Hirai, M.; Matsunobe, T.; Nakamura, M.; Takahagi, T.; Ishitani, A.; Lin, H. Thin Solid Films 1995, 256, 262.
    27. Lau, K. M.; Tang, J. X.; Sun, H. Y.; Lee, C. S.; Lee, S. T.; Yan, D. Appl. Phys. Lett. 2006, 88, 173513.
    28. Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett. 1996, 69, 3066.
    29. Xiao, K.; Liu, Y.; Guo, Y.; Yu, G.; Wan, L.; Zhu, D. Appl. Phys. A 2003, 80, 1541.
    30. Puigdollers, J.; Voz, C.; Fonrodona, M.; Cheylan, S.; Stella, M.; Andreu, J.; Vetter, M.; Alcubilla, R. J. Non-Cryst. Solids 2006, 352, 1778.
    31. Zhang, J.; Wang, J.; Wang, H.; Yan, D. Appl. Phys. Lett. 2004, 84, 142.
    32. Zhang, J.; Wang, H.; Yan, X.; Wang, J.; Shi, J.; Yan, D. Adv. Mater. 2005, 17, 1191.

    33. Della Pirriera, M.; Puigdollers, J.; Voz, C.; Stella, M.; Bertomeu, J.; Alcubilla, R. J. Phys. D: Appl. Phys. 2009, 42, 145102.
    34. Zhu, F.; Grobosch, M.; Treske, U.; Knupfer, M.; Huang, L.; Ji, S.; Yan, D. Appl. Phys. Lett. 2011, 98, 203303.
    35. Horowitz, G.; Peng, X.-Z.; Fichou, D.; Garnier, F. Synth. Met. 1992, 51, 419.
    36. Wakayama, Y.; de Oteyza, D. G.; Garcia-Lastra, J. M.; Mowbray, D. J. ACS Nano 2010, 5, 581.
    37. Vogel, J.-O.; Salzmann, I.; Duhm, S.; Oehzelt, M.; Rabe, J. P.; Koch, N. J. Mater. Chem. 2010, 20, 4055.
    38. Wang, C.-H.; Jian, S.-D.; Chan, S.-W.; Ku, C.-S.; Huang, P.-Y.; Chen, M.-C.; Yang, Y.-W. J. Phys. Chem. C 2011, 116, 1225.
    39. Zeng, X.; Zhang, D.; Duan, L.; Wang, L.; Dong, G.; Qiu, Y. Appl. Surf. Sci. 2007, 253, 6047.
    40. Ashida, M.; Uyeda, N.; Suito, E. Bull. Chem. Soc. Jpn. 1966, 39, 2616.
    41. 冼鼎昌 神奇的光–同步輻射; 牛頓出版股份有限公司, 1999.
    42. 國家同步輻射研究中心 http://www.srrc.gov.tw/chinese/lightsource.aspx
    43. Horowitz, G. Adv. Mater. 1998, 10, 365.
    44. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436.
    45. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926.
    46. Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.
    47. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
    48. Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin, 1992.
    49. Vickerman, J. C. Surface Analysis - The Principal Techniques; John Wiley & Sons, Ltd, 1997.
    50. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; John Wiley & Sons, Ltd, 1994.
    51. Birkholz, M. Thin Film Analysis by X-Ray Scattering; Wiley-VCH, 2006.
    52. Meyer, G.; Amer, N. M. Appl. Phys. Lett. 1988, 53, 1045.
    53. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; 6th ed., 2007.
    54. Holland, B. N.; Peltekis, N.; Farrelly, T.; Wilks, R. G.; Gavrila, G.; Zahn, D. R. T.; McGuinness, C.; McGovern, I. T. Physica Status Solidi B-Basic Solid State Physics 2009, 246, 1546.
    55. Calabrese, A.; Floreano, L.; Verdini, A.; Mariani, C.; Betti, M. G. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 115446.
    56. Song, X.; Wang, L.; Fan, Q.; Wu, Y.; Wang, H.; Liu, C.; Liu, N.; Zhu, J.; Qi, D.; Gao, X.; Wee, A. T. S. Appl. Phys. Lett. 2010, 97, 032106.
    57. Hoshino, A.; Takenaka, Y.; Miyaji, H. Acta Crystallogr. Sect. B-Struct. Sci. 2003, 59, 393.
    58. Ofuji, M.; Inaba, K.; Omote, K.; Hoshi, H.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Jpn. J. Appl. Phys. 2002, 41, 5.

    59. Ofuji, M.; Inaba, K.; Omote, K.; Hoshi, H.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Jpn. J. Appl. Phys. 2003, 42, 5.
    60. Yakuphanoglu, F.; Caglar, M.; Caglar, Y.; Ilican, S. Synth. Met. 2010, 160, 1520.
    61. Ofuji, M.; Ishikawa, K.; Takezoe, H.; Inaba, K.; Omote, K. Appl. Phys. Lett. 2005, 86, 062114.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE