簡易檢索 / 詳目顯示

研究生: 許哲嘉
Che-Chia Hsu
論文名稱: 全內反射螢光顯微系統於DNA探針動態行為之研究
The Dynamic behavior study of DNA probe by TIRF
指導教授: 許志楧
Ian C. Hsu
吳見明
Chien-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 147
中文關鍵詞: 單分子全內反射螢光顯微鏡DNA布朗運動
外文關鍵詞: single molecule, TIRFM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    固化在基因晶片上的DNA探針之動態行為是科學界感興趣的問題。固化方式一般分為兩種:(1)藉由鋪在玻片上的poly-L-lysine以正負電荷吸引的方式來固定DNA;(2)以共價鍵結的方式將DNA的一端固定在玻片上。我們希望可以鑑別兩種固化方式之DNA在溶液中的形態,究竟DNA是像海草般在溶液中搖擺(海草模式);或是像根繩索般平躺在玻片表面(平躺模式)。這兩種模式是影響DNA雜合效率的重要因素。
    由於TIRFM產生之漸逝波具有隨高度指數衰減的特性,漸逝波的強度將隨z軸改變而產生敏感變化。被漸逝波激發的螢光所產生的訊號強度也會隨著螢光在z軸的位移而改變,所以TIRFM系統對螢光z軸位置變化有敏銳的偵測能力。我們以TIRFM偵測一條20base pairs長且標有Cy3的DNA,DNA以biotin-streptavidin 的方式固定在玻片表面,並判斷DNA之行為屬於上述何種模式。即時偵測螢光訊號強度隨時間的變化來估計螢光在Z軸上的位移,並以此推測DNA在玻片表面之形態。另外我們也以同樣的方式觀察以poly-L-lysine固化之DNA,並以統計的方法比較兩種固化方式的差異。


    Abstract

    The dynamical behavior of DNA, which was immobilized on DNA microarray, have puzzled the gene chip researchers. In general, there are two types of immobilization methods, i.e. charge-charge interaction by poly-L-lysine coating and covalent binding to the glass surface at the one end of DNA. In this study, we aim to distinguish that either DNA is like a seaweed wavering in the solution (wavering mode) or like a rope sticking on the surface (sticking mode) of glass. The two modes have quite different hybridization efficiency.
    Because evanescent wave generated by TIRFM exhibits exponential decay with increasing distance z from the interface, the signal intensity excited by evanescent wave is thus sensitive to the change of the location of the signal emmitor along z direction. Therefore, the TIRFM is adequate to gauge the vertical location of the fluorescence dye. We measure the TIRF signal of Cy3 labeled 20-bp DNA molecules which was immobilized on the coverslip via a biotin-streptavidin. To determine which mode that the behavior DNA are belong to,,we record the time trace of the single Cy3 fluorescence intensity to see if there is a changes in intensity corresponding to the vertical displacement. We also performed the same measurement for the other type of immobilization methods, i.e. charge-charge interaction by poly-L-lysine coating.
    In this study, we will also report the theoriotical estimated size of fluorescence signal produced by the wavering of dye in the exponentially decayed evanescent excitation field. The amount and the time characteristic of the wavering is determined by Brownian motion. This wavering signal should be larger enough to stand out from the noise of a steaty single dye.

    第一章 序論 1 1-1 前言 1 1-2 研究動機 5 1-3文獻回顧 6 1-4 章節提要 15 第二章 實驗原理 17 2-1螢光發光原理 17 2-2螢光共振能量轉移 22 2-3全反射(Total Reflection)與漸逝波(Evanescence Wave) 23 2-4全內反射螢光顯微系統 (Total Internal Reflection Fluorescence Microscopy) 27 2-4.1稜鏡式全內反射螢光顯微鏡系統 28 2-4.2物鏡式全內反射螢光顯微鏡系統 29 2-5偵測極限 30 2-6單分子追蹤演算法 (single particle tracking algorithm) 33 2-7 去氧核醣核酸 (de-oxy-nucleic-acid, DNA)基本介紹 36 2-8 DNA布朗運動頻率與範圍評估 39 第三章 系統介紹 44 3-1 系統光路與元件介紹 46 3-2雙影像分光器(Dual-View) 56 3-3 電子倍增電荷耦合元件(Electron Multiplying Charge Coupled Device, EMCCD) 57 3-3.1 EMCCD之 訊雜比值控制 65 第四章 實驗設計與方法 68 4-1 實驗設計 68 4-2 實驗方法 75 4-2.1 螢光分子的選擇 75 4-2.2 DNA分子之稀釋保存與TE緩衝溶液泡製 77 4-2.3 玻片的清洗與微流道之製作 79 4-2.4 將DNA固定在玻片上的方法 82 4-2.5 影像緩衝液的泡製 85 4-2.6 DNA序列之選擇與DNA之雜合方式 86 4-3 CCD參數設定與單分子影像之擷取 87 4-3.1 EMCCD參數的調整與單位之換算 87 4-3.2 單分子影像之擷取方法 93 4-4 數據分析方法 98 4-4.1單分子訊號的強度 103 4-4.2單分子訊號強度隨時間的跳動情形 104 4-4.3訊噪比 106 4-4.4以檢定的方法作判定與比較 106 第五章 實驗結果與討論 113 5-1 單分子螢光訊號 113 5-2 以單分子技術來觀察DNA雜合的現象 117 5-3 觀察DNA以不同固化方式固定在玻片表面之形態 123 5-4 以AFM作驗證 129 5-5 討論以及未來改善方法 139 第六章 結論與未來展望 143 參考文獻 146

    參考文獻
    [1]E. S. Forzani et al., Environ Sci Technol 39, 1257 (2005).
    [2]D. Axelrod, N. L. Thompson, and T. P. Burghardt Methods in cellular imaging, p.362-380, Oxford University Press.
    [3]W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, Cytometry 36:224-231 . 1999).
    [4]http://www.olympusmicro.com/primer/java/imageformation/rayleighdisks/index.html.
    [5]Chang I, Langumir 1995, 11:2083-2089.
    [6]http://www.olympusmicro.com/primer/java/jablonski/lightandcolor/index.html.
    [7]http://www.olympusmicro.com/primer/lightandcolor/fluoroexcitation.html.
    [8]T. Schmidt et al., Proc Natl Acad Sci U S A 93, 2926 (1996).
    [9]http://www.olympusmicro.com/primer/techniques/confocal/index.html.
    [10] D. Toomre, and D. J. Manstein, Trends Cell Biol 11, 298 (2001).
    [11] N. L. Thompson, and B. C. Lagerholm, Curr Opin Biotechnol 8, 58 (1997).
    [12] Y. Harada et al., Biophys J 76, 709 (1999).
    [13] D. Axelrod, J Cell Biol 89, 141 (1981).
    [14] http://www.loci.wisc.edu/multiphoton/mp.html.
    [15]http://www.olympusmicro.com/primer/java/tirf/highnaobjective/index.html.
    [16] A. L. Mattheyses, A. D. Hoppe, and D. Axelrod, Biophys J 87, 2787 (2004).
    [17] T. Ha, Methods 25, 78 (2001).
    [18] M. Schena et al., Science 270, 467 (1995).
    [19] L. He et al., J. Am. Chem. Soc, 122, 9071 (2000).
    [20] G. Zocchi, Biophys J 81, 2946 (2001).
    [21] M. Singh-Zocchi et al., Proc Natl Acad Sci U S A 100, 7605 (2003).
    [22] L. J. Friedman, J. Chung, and J. Gelles, Biophys J 91, 1023 (2006).
    [23] X. Qu et al., Proc Natl Acad Sci U S A 101, 11298 (2004).
    [24] E. Betzig et al., Science 313, 1642 (2006).
    [25] M. J. Rust, M. Bates, and X. Zhuang, Nat Methods 3, 793 (2006).
    [26] J. N. Greeson et al., Brain Res 1091, 140 (2006).
    [27] X. Michalet et al., Science 307, 538 (2005).
    [28] C. Y. Zhang et al., Nat Mater 4, 826 (2005).
    [29] Y. C. Sasaki et al., Phys Rev Lett 87, 248102 (2001).
    [30] L. S. Churchman et al., Proc Natl Acad Sci U S A 102, 1419 (2005).
    [31]http://www.olympusmicro.com/primer/techniques/fluorescence/fluorointrohome.html.
    [32] http://femtolab.chem.nthu.edu.tw/.
    [33] I. Rasnik, S. A. McKinney, and T. Ha, Nat Methods 3, 891 (2006).
    [34] T. Ha et al., Proc Natl Acad Sci U S A 93, 6264 (1996).
    [35] S. W. Hell, Nat Biotechnol 21, 1347 (2003).
    [36] M. K. Cheezum, W. F. Walker, and W. H. Guilford, Biophys J 81, 2378 (2001).
    [37] http://en.wikipedia.org/wiki/DNA.
    [38] J. D. Watson, and F. H. Crick, Nature 171, 737 (1953).
    [39] S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
    [40] C. Bustamante et al., Curr Opin Struct Biol 10, 279 (2000).
    [41] R. Brown, Annalen der Physik und Chemie, 294 (1828).
    [42] E. DICKINSON, Chemical Society Reviews 14 421 (1985 ).
    [43] ALBERT EINSTEIN, (1926).
    [44] D. J. Denvir, and G. Colin.
    [45] www.farfield-scientific.com/pdfs/014.pdf.
    [46] P. D. Sawant et al., J Nanosci Nanotechnol 5, 951 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE