研究生: |
彭胤瑋 Peng, Yin-Wei |
---|---|
論文名稱: |
高效率矽晶太陽能電池之設計、製造、特性分析及關鍵製程開發 Design, Fabrication, Characteristics Analysis and Key Technology Development of High Efficiency Silicon Solar Cells |
指導教授: |
甘炯耀
Gan, Jon-Yiew |
口試委員: |
李紫原
Lee, Chi-Young 余沛慈 Yu, Peichen 陳昇暉 Chen, Sheng-Hui 黃崇傑 Huang, Chorng-Jye |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 高效率矽晶太陽能電池 、鈍化射極與背面電池 、交趾式太陽能電池 、網印 |
外文關鍵詞: | high-efficiency c-Si solar cells, PERC, IBC, screen printing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著綠能紀元的到來,我們似乎可以預見太陽能光伏產業未來的繁景。而為了加速光伏產業的進程,產界與學界都不斷地在尋求創新的高效電池結構以及具有成本競爭力的電池製程,以期在成本上得以對抗現行的燃煤發電。從學理的角度來看,如果太陽能模組可以結合一套優異的儲能系統,那麼全世界的能源需求都能夠由太陽能光伏來負擔。若以20%的太陽能模組為例,要滿足全球的能源需求僅需小於2%地球土地的安置面積就能夠達成。但就像現行所有的商品化產品一樣,成本的考量對光伏產業而言也總是排在第一順位。對太陽能光伏系統來說,它的建置成本有一部份是取決於組成模組的單片太陽能電池的效率,而要降低單片電池製造成本的最佳手段就是提升電池本身的效率。簡而言之,一個具有經濟效應的太陽能發電系統需要由高效且低成本的太陽能電池來組成。
本論文的主題有以下幾項:(1)推演出單接面電池與堆疊型電池的理論效率極限;(2)利用主流的PERC電池技術製作高效率的n型IBC電池;(3)檢驗IBC解析方程與量測數據之間的兼容性;(4)多晶矽鈍化接觸結構的製作與模擬分析。
本論文對現今光伏產業的重要貢獻在於,我們證明了高效率的IBC電池可以透過便宜的網印技術製作出來。透過採用主流的PERC電池生產技術,我們製備出了有效面積為100公分平方且光電轉換效率超過22%的網印型IBC電池。這在所有含有Al合金化射極的IBC電池的相關報導中,我們所製備的perc-IBC的電池性能在目前位居首位。另外,我們也發覺perc-IBC電池的一些重要特性(如JSC、VOC、RS)都可以透過解析方程進行解構,並獲得很好的一致性。此外,我們也透過計算出ρC-J0之間的權衡關係來找出多晶矽鈍化接觸結構的有效應用區間,同時,鈍化接觸結構的長時間穩定性則透過光電導衰減法的量測手段進行監測。
With the advent of the green age, the prosperity of solar photovoltaics (PV) can be well imagined. To further quicken the pace of solar PV progress, scientists and researchers are seeking innovative ideas and cost-competitive fabrication process for high-efficiency cells to fight existing coal-generated electricity. In principle, combining with an outstanding energy storage solution, the worldwide energy need can be fully met by solar PV. If we choose a solar module with an efficiency of 20% to build a solar PV system, it takes only less than 2% of Earth’s land area to fulfill the global energy need. Like other business activities, the price or the manufacturing costs are always the primary consideration for solar PV industry. And because the cost of solar PV systems is partly determined by the cost of solar cells, therefore to continue the success story of this solar PV working horse, the most certain way to reduce the production costs is to increase solar cell’s power conversion efficiencies. Briefly, an economical solar power systems require high efficiency, low-cost solar cells.
This thesis covers some topics: (1) derivation of the theoretical efficiency limit for single-junction and multi-junction silicon solar cells based on Shockley-Queissier model; (2) design, fabrication, and characterization of the high efficiency n-Si IBC solar cells using mainstream PERC (passivated emitter and rear contact) process; (3) examination of the compatibility between the electrical characteristics of IBC solar cells and the physics-based analytical model; and (4) fabrication and simulation of the polysilicon passivating contacts.
One of the important contributions of this thesis to solar PV research field is to prove that the high-efficiency IBC solar cells can be achieved with the economic friendly screen-printing technique. By exploiting PERC process for cell fabrication, we fabricate a proof-of-concept 100 cm2 SP-IBC solar cell with a conversion efficiency over 22%. This device performance is at present the best reported for back-contacted solar cells with Al-alloyed emitter based on traditional IBC schemes. Moreover, a good agreement is found between the measured data and the analytical model and therefore the developed model can serve as a powerful tool for further optimization study of the electrode pattern layout. Subsequently, the useful application range of passivating contacts is identified by a subtle relationship between the specific contact resistance (ρC) and the saturation current density (J0). Concurrently, the passivation stability of passivating contacts is monitored by photoconductance decay (PCD) measurement and shown here. This allows us to assess whether the passivating contacts are suitable for long-term usage.
[1] SEII Implementation Plan 2013-2015, European Photovoltaic Industry Association, May 2013.
[2] Renewable Energy Cost Analysis-Solar Photovoltaics, International Renewable Energy Agency June 2012. Available at http://www.irena.org/menu/index.aspx?mnu=Subcat &PriMenuID=36&CatID=141&SubcatID=231.
[3] A. Schneider, L. Rubin, G. Rubin, “Solar cell efficiency improvement by new metallization techniques - the Day4 electrode concept,” in: Proc. IEEE 4th World Conference on Photovoltaic Energy Conference, New York, 1095, 2006.
[4] S. Braun, G. Hahn, R. Nissler, C. Pönisch, D. Habermann, “Multi-busbar Solar Cells and Modules: High Efficiencies and Low Silver Consumption,” Energy Procedia 38, 334 (2013).
[5] M.A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by the Auger recombination process,” IEEE Transaction Electron Device ED-31, 671 (1984).
[6] H. Hannebauer, T. Dullweber, T. Falcon, X. Chen, R. Brendel, in: Proc. 4th Metallization Workshop, Konstanz, Germany (2013), http://www.metallizationworkshop.eu/fileadmin/ metallizationworkshop/docs/presentations2013/Session_VII_Hannebauer.pdf
[7] A. Lachowicz, K. Ramspeck, P. Roth, M. Manole, H. Blanke, W. Hefner, E. Brouwer, B. Schum, A. Metz, in: Proc. 27th EUPVSEC, WIP, Munich, 1846, 2012.
[8] G. Hahn, in: Proc. 25th EUPVSEC, WIP. Munich, 1091, 2010.
[9] H. Hannebauer, T. Dullweber, S. Wyczanowski, K. Weise, F. Delahaye, O. Doll, I. Köhler and R. Brendel, in: Proc. 28th EUPVSEC, WIP, Munich, 2013.
[10] T. Dullweber, C. Kranz, B. Beier, B. Veith, J. Schmidt, B. F. P. Roos, O. Hohn, T. Dippell, and R. Brendel, “Inductively coupled plasma chemical vapour deposited AlOx/SiNy layer stacks for applications in high-efficiency industrial-type silicon solar cells”, Solar Energy Materials and Solar Cells 112, 196 (2013).
[11] A. Herguth, G. Schubert, M. Kaes, and G. Hahn, “Investigations on the long time behavior of the metastable boron–oxygen complex in crystalline silicon,” Progress in Photovoltaics 16, 135 (2008).
[12] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Solar Energy Materials and Solar Cells 90, 3438 (2006).
[13] B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Applied Physics Letters 89, 042112 (2006).
[14] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden, W.M.M.Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics 16, 461 (2008).
[15] P.J. Cousins, D.D. Smith, H.C. Luan, J. Manning, T.D. Dennis, A. Waldhauer, K.E. Wilson, G. Harle, G.P. Mulligan, “Gen III: improved performance at lower cost,” in: Proc. 35th IEEE PVSC, Honolulu, HI, June 2010.
[16] J.D. Huyeng, A. Spribille, S. Nold, R. Efinger, R. Keding, O. Doll, F. Clement, “A cost-driven research strategy towards industrially feasible high-efficiency back-contact back-junction silicon solar cells,” presented at the 33rd European PV Solar Energy Connference and Exhibition, Amsterdam, The Netherlands, 2017.
[17] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," Journal of Applied Physics 32, 510 (1961).
[18] www.pvlighthouse.com.au/resources.
[19] M.A. Green, "Solar cells: operating principles, technology, and system applications," Prentice-Hall, Englewood Cliffs (1982).
[20] PV Lighthouse, Altermatt Lecture: The Solar Spectrum. Available: https://www2. pvlighthouse.com.au/resources/courses/altermatt/The%20Solar%20Spectrum/The%20global%20standard%20spectrum%20(AM1-5g).aspx.
[21] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, “Solar cell efficiency tables (version 53),” Progress Photovoltaics 27, 3 (2019).
[22] A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424 (2016)
[23] (2016) Trina sets new mono PERC cell efficiency record of 22.61%. PVTECH. Available: https://www.pv-tech.org/news/trina-sets-new-mono-perc-cell-efficiency-record-of-22.61
[24] Y. Tao, V. Upadhyaya, Y.Y. Huang, C.W. Chen, K. Jones, A. Rohatgi, “Carrier selective tunnel oxide passivated contact enabling 21.4% efficient large-area n-type silicon solar cells,” Proceeding in 43rd IEEE Photovoltaic Specialists Conference, Portland, OR, USA (2016).
[25] D.D. Smith, G. Reich, M. Baldrias, M. Reich, N. Boitnott, and G. Bunea, “Silicon solar cells with total area efficiency above 25%,” in: Proc. 43rd IEEE Photovoltaic Specialists Conference, Portland, USA (2016)
[26] D. Adachi, J.L Hernández, and K. Yamamoto, “Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency,” Applied Physics Letters 107, 233506 (2015).
[27] K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Solar Energy Materials and Solar Cells 173, 37 (2017).
[28] E. Urrejola, K. Peter, H. Plagwitz, G. Schubert, “Understanding and avoiding the formation of voids for rear passivated silicon solar cells,” in: Proc. 3rd Workshop on Metallization for Crystalline Silicon Solar Cells (2011).
[29] Private communication.
[30] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, and B. Hoex, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics 16, 461 (2008).
[31] T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt, et al., “Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells,” Progress Photovoltaics 20, 630 (2012).
[32] B. Hallam, A. Uruena, R. Russell, M. Aleman, M. Abbott, C. Dang, et al., “Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter,” Solar Energy Materials and Solar Cells 134, 89 (2015).
[33] A. Metz, D. Adler, S. Bagus, H. Blanke, M. Bothar, E. Brouwer, et al., “Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology,” Solar Energy Materials and Solar Cells 120, 417 (2014).
[34] W. Deng, D. Chen, Z. Xiong, P.J. Verlinden, J. Dong, and F. Ye, “20.8 percent of p-type multicrystalline PERC solar cell on 156 mm-156 mm p-type multicrystalline silicon substrate,” IEEE Journal of Photovoltaics 6, 3 (2016).
[35] S. Zhang, J. Peng, H. Qian, H. Shen, Q. Wei, W. Lian, Z. Ni, J. Jie, X. Zhang, and L. Xie, “The impact of thermal treatment on light-induced degradation of multicrystalline silicon PERC solar cell,” Energies 12, 416 (2019).
[36] F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S.W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Solar Energy Materials & Solar Cells 120, 270 (2014).
[37] F. Feldmann, M. Bivour, C. Reichel, H. Sterinkemper, M. Hermle, and S.W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Solar Energy Materials & Solar Cells 131, 46 (2014).
[38] A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benick, and M. Hermle, “Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers,” Solar Energy Materials & Solar Cells 142, 123 (2015).
[39] Y. Ohshita, T. Kamioka, and K. Nakamur, “Technology trend of high efficiency crystalline silicon solar cells,” Association of Asia Pacific Physical Societies 27(3) (2017).
[40] D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. Knoshita, M. Taguchi, H. Sakata, and E. Maruyama, “High-performance HIT solar cells for thinner silicon wafers,” in: Proc. 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI, USA, 3137 (2010).
[41] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics 4(1), 96 (2014).
[42] Photovoltaics and thin film, electronics laboratory PV-LAB, “Silicon-based heterojunction solar cells”, EPFL (2017).
[43] R. Keding, D. Stuewe, M. Kamp, C. Reichel, A. Wolf, R. Woehl, et al., “Co-Diffused Back-Contact Back-Junction Silicon Solar Cells without Gap Regions,” IEEE Journal of Photovoltaics 3, 1236 (2013).
[44] M. Dahlinger, B. Bazer-Bachi, T. C. Roeder, J. R. Koehler, R. Zapf-Gottwick, and J. H. Werner, “Laser-Doped Back-Contact Solar Cells,” IEEE Journal of Photovoltaics 5, 812 (2015).
[45] H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garin, et al., “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nature Nanotechnology 10, 624 (2015).
[46] D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, et al., “SunPower's Maxeon Gen III solar cell: High Efficiency and Energy Yield,” in: Proc. IEEE 39th Photovoltaic Specialists Conference (PVSC), 908 (2013).
[47] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE Journal of Photovoltaics 4, 1433 (2014).
[48] A. Ebong, and N. Chen, “Metallization of crystalline silicon solar cells: A review,” Published in Published in High Capacity Optical Networks and Emerging/Enabling Technologies, Istanbul, Turkey (2012).
[49] J. Nakamura, N. Asano, T. Hieda, C. Okamoto, H. Katayama, and K. Nakamura, “Development of heterojunction back contact Si solar cells,” IEEE Journal of Photovoltaics 4, 1491 (2014).
[50] Sharp’s report. Available: https://www.pv-tech.org/news/sharp-hits-25.09-conversion-efficiency-for-6-inch-hbc-solar-cell.
[51] J. Liu, Y. Yao, S. Xiao, and X. Gu, “Review of status developments of high-efficiency crystalline silicon solar cells,” Journal of Physics D: Applied Physics 51, 123001 (2018).
[52] M.K. Stodolny, M. Lenes, Y. Wu, G.J.M. Janssen, I.G. Romijn, J.R.M. Luchies, and L.J. Geerligs, “n-type polysilicon passivating contact for industrial bifacial n-type solar cells,” Solar Energy Materials & Solar Cells 158, 24 (2016).
[53] C.W. Chen, M. Hermle, J. Benick, Y.G. Tao, Y.W. Ok, A. Upadhyaya, A.M. Tam, and A. Rohatgi, “Modeling the potential of screen printed front junction CZ silicon solar cell with tunnel oxide passivated back contact,” Progress Photovoltaics 25, 49 (2017).
[54] E. D. Jackson, "Solar Energy Converter," US Patent 2,949,489, August 16, 1960.
[55] G. Ronsengarten, "Spectral beam splitting for efficient conversion of solar energy - A review," Renewable and Sustainable Energy Reviews 28, 654 (2013).
[56] J. Nelson, "The Physics of Solar Cells," Imperical College Press, 2003.
[57] A. Marti and G. L. Araujo, "Limiting efficiencies for photovoltaic energy conversion in multigap systems," Solar Energy Materials and Solar Cells 43, 203 (1996).
[58] C.H. Henry, "Limiting Efficiencies of Ideal Single and Multiple Energy-Gap Terrestrial Solar-Cells," Journal of Applied Physics 51, 4494 (1980).
[59] A.D. Vos and H. Pauwels, "On the Thermodynamic Limit of Photovoltaic Energy Conversion," Applied Physics 25, 119 (1981).
[60] M.A. Green, "Thrid Generation Photovoltaics: Advanced Solar Energy Conversion," Springer, 2006.
[61] B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination.” Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
[62] K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, and T. Takamoto, in: Proc. 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan 2013.
[63] T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, and M. Kondo, “Development of highly stable and efficient amorphous silicon based solar cells.” in: Proc. 28th European Photovoltaic Solar Energy Conference, 2213, 2013.
[64] S.W. Ahn, S.E. Lee, and H.M. Lee, “Toward commercialization of triple-junction thin- film silicon solar panel with >12% efficiency.” in: Proc. 27th European Photovoltaic Solar Energy Conference, 3AO5.1, Frankfurt, September 2012.
[65] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using and earth-abundant Cu2ZnSnS4 absorber,” Progress in Photovoltaics 21, 72 (2013).
[66] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, and D. Braunig, “Efficient CuInS2 solar cells from a rapid thermal process (RTP),” Solar Energy Materials and Solar Cells 67, 159 (2001).
[67] S. Merdes, D. Abou-Ras, R. Mainz, R. Klenk, M. Ch. Lux-Steiner, A. Meeder, H. W. Schock, and J. Klaer, “CdS/Cu(In,Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process,” Progress in Photovoltaics 21, 88 (2013).
[68] S. Benagli, D. Borello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzal, J. Bailat, J. Steinhauser, M. Marmelo,G. Monteduro, and L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor,” in: Proc. 24th European Photovoltaic Solar Energy Conference /5th World Conference on Photovoltaic Energy Conversion 2293, 2009.
[69] R. Kaigawa, A. Neisser, R. Klenk, and M. –Ch. Lux-Steiner, “Improved performance of thin film solar cells based on Cu(In,Ga)S2,” Thin Solid Films 415, 266 (2002).
[70] S. Ito, K. Tsujimoto, D-C. Nguyen, K. Manabe, and H. Nishino, “Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency,” International Journal of Hydrogen Energy 38(36), 16749 (2013).
[71] Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, and S.I. Seok, “Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy,” Advanced Functional Materials 24, 3587 (2014).
[72] E. Zimmermann, T. Pfadler, J. Kalb, J.A. Dorman, D. Sommer, G. Hahn, J. Weickert, and L. Schmidt-Mende, “Toward high-efficiency solution-processed planar heterojunction Sb2S3 Solar Cells,” Advanced Science 2, 1500059 (2015).
[73] M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, and J.H. He, “Monolayer MoS2 Heterojunction Solar Cells,” ACS NANO 8, 8317 (2014).
[74] M. Izaki, T. Shinagawa, K.T. Mizuno, Y. Ida, M. Inaba and A. Tasaka, “Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device,” Journal of Physics D: Applied Physics 40, 3326 (2007).
[75] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Applied Physics Letters 88, 163502 (2006).
[76] T. Miyata, H. Tanaka, H. Sato, and T. Minami, “P-type semiconducting Cu2O–NiO thin films prepared by magnetron sputtering,” Journal of Materials Science 41, 5531 (2006).
[77] N. Kikuchi and K. Tonooka, “Electrical and structural properties of Ni-doped Cu2O,” Thin Solid Films 486 33 (2005).
[78] K.J. Kim, K.Y. Lim, and Y.W. Kim, “Effective Nitrogen Doping for Fabricating Highly Conductive b-SiC Ceramics,” Journal of the American Ceramic Society 94, 3216 (2011).
[79] M. Kriener1, T. Muranaka, J. Kato, Z.A. Ren, J. Akimitsu, and Y. Maeno, “Superconductivity in heavily boron-doped silicon carbide,” Science and Technology of Advanced Materials 9, 044205 (2008).
[80] R. Woehl, M. Ruediger, D. Biro, and J. Wilde, “All-screen-printed back-contact back-junction silicon solar cells with aluminum-alloyed emitter and demonstration of interconnection of point-shaped metalized contacts,” Progress in Photovoltaics 23, 226 (2015).
[81] J. Dong, L. Tao, Y. Zhu, Z. Yang, Z. Xia, R. Sidhu, and G. Xing, “High-efficiency full back contacted cells using industrial processes,” IEEE Journal of Photovoltaics 4, 130-133 (2014).
[82] PVCDROM. Available: https://www.pveducation.org/pvcdrom/tandem-cells.
[83] Production specification report (SPLITMAX TSM-DE14H (II)), Trinasolar [Online] Available: https://static.trinasolar.com/sites/default/files/EN_TSM_DE14H_II_plus_data sheet_B _2017.pdf
[84] H. Huang, J. Lv, Y. Bao, R. Xuan, S. Sun, S. Sneck, S. Li, C. Modanese, H. Savin, A. Wang, and J. Zhao, “20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%,” Solar Energy Materials & Solar Cells 161, 14 (2017).
[85] J. Liu, Y. Yao, S. Xiao, and X. Gu, “Review of status developments of high-efficiency crystalline silicon solar cells,” Journal of Physics D: Applied Physics 51, 23001-1 (2018).
[86] S. Werner, “Key aspects for fabrication of p-type Cz-Si PERC solar cells exceeding 22% conversion efficiency,” presented at the 33rd European PV Solar Energy Conf. and Exhibition, Amsterdam, The Netherlands, Sep. 24-29,2017.
[87] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE Journal of Photovoltaics 4(6), 1433 (2014).
[88] J. Nakamura, N. Asano, T. Hieda, C. Okamoto, H. Katayama, and K. Nakamura, “Development of heterojunction back contact Si solar cells,” IEEE Journal of Photovoltaics 4(6), 1491 (2014).
[89] U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, E. Bugiel, T. Wietler, R. Brendel, “Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions,” Solar Energy Materials & Solar Cells 131, 85 (2014).
[90] A. D. Upadhyaya, Y. W. Ok, E. Chang, V. Upadhyaya, K. Madani, K. Tate, B. Rounsaville, C. J. Choi, V. Chandrasekaran, V. Yelundur, A. Gupta, and A. Rohatgi, “Ion-implanted screen-printed n-type solar cell with tunnel oxide passivated back contact,” IEEE Journal of Photovoltaics 6(1), 153 (2016).
[91] A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benick, and M. Hermle, “Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers,” Solar Energy Materials & Solar Cells 142, 123 (2015).
[92] P.Y. Hsin, Y.W. Peng, and J.Y. Gan, “High efficiency screen-printed p-Si interdigitated back contact cells: fabrication and analytical characterization,” IEEE Journal of Photovoltaics 7(5), 1284 (2017).
[93] K.R. McIntosh, M.J. Cudzinovic, D.D. Smith, W.P. Mulligan, and R.M. Swanson, “The choice of silicon wafer for the production of low-cost rear-contact solar cells,” in Proc. 3rd World Conf. on Photovolt. Energy Conversion, Osaka, Japan, 2003, pp. 971-974.
[94] R.A. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” in Proc. 1996 Conf. Rec 25th IEEE Photovolt. Spec. Conf, Washington, DC, USA, USA, 1996, pp. 457-460.
[95] H. Nagel, C. Berge, and A.G. Aberle, "Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors," Journal of Applied Physics 86(11), 6218 (1999).
[96] D.E. Kane, and R.M. Swanson, “Measurement of the Emitter Saturation Current by a Contactless Photoconductivity Decay Method,” in Proc.1985 Conf. Rec.18th IEEE Photovolt. Spec. Conf., 1985, pp. 578–583.
[97] AB. Sproul, and M.A. Green, “Improved value for the silicon intrinsic carrier concentration from 275 to 375 K,” Journal of Applied Physics 70(2), 846 (1991).
[98] E. Franklin, K. Fong, K. Mclntosh, A. Fell, A. Blakers, T. Kho, D. Walter, D. Wang, N. Zin, M. Stocks, E.C. Wang, N. Grant, Y. Wan, Y. Yang, X. Zhang, Z. Feng, and P.J. Verlinden, “Design, fabrication and characterisation of a 24.4%efficient interdigitated back contact solar cell,” Progress Photovoltaics 24, 411 (2016).
[99] Z. Du, C. Zhang, F. Li, R. Zhou, and M. Hong, “Impact of laser-induced oxidation on silicon wafer solar cell’s performance,” IEEE Journal of Photovoltaics 6(3), 617 (2016).
[100] PV Lighthouse. [Online] Available: https://www.pvlighthouse.com. au/equivalent-circuit.
[101] A. Richter, F. Werner, A. Cuevas, J. Schmidt, and S.W. Glunz, “Improved parameterization of Auger recombination in silicon,” Energy Procedia 27, 88 (2012).
[102] D.L. Meier and D.K. Schroder, “Contact resistance - Its measurement and relative importance to power loss in a solar cell,” IEEE Transaction on Electron Devices 31(6), 647 (1984).
[103] M.A. Green, “Lambertian light trapping in textured solar cells and light‐emitting diodes- analytical solutions,” Progress Photovoltaics 10, 235 (2002).
[104] T. Markvart, “Relationship between dark carrier distribution and photogenerated carrier collection in solar cells,” IEEE Transaction on Electron Devices 43(6), 1034 (1996).
[105] P.P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells: a review,” Journal of Computational Electronics 10 (3), 314 (2011).
[106] J. Zhao, A. Wang, M.A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters 73 (14), 1991 (1998).
[107] M. Zanuccoli, R. De Rose, P. Magnone, and E. Sangiorigi, “Performance analysis of rear point contact solar cells by three-dimensional numerical simulation,” IEEE Transactions on Electron Devices 59(5), 1311 (2012).
[108] K.R. Catchpole, and A.W. Blackers, “Modelling the PERC structure for industrial quality silicon,” Solar Energy Materials & Solar Cells 73, 189 (2002).
[109] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics 4, 96 (2014).
[110] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto. “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE Journal of Photovoltaics 4, 1433 (2014).
[111] F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S.W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Solar Energy Material & Solar Cells 131, 46 (2014).
[112] F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle, and S.W. Glunz, “Efficient carrier selective p- and n-contacts for Si solar cells. Solar Energy Materials & Solar Cells 131, 100 (2014).
[113] R.M. Swanson, "point-contact solar cells: modeling and experiment," Solar Cells 17, 85 (1986).
[114] Y.H. Kwark, R. Sinton, and R.M. Swanson, “SIPOS heterojunction contacts to silicon,” Proceeding of the 1984 International Electron Devices Meeting, San Francisco, USA, 742, 1984.
[115] E. Yablonovitch, T. Gmitter, R.M. Swanson, and Y.H. Kwark, “A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell,” Applied Physics Letters 47, 1211 (1985).
[116] D.D. Smith, P.J. Cousins, A. Masad, A. Waldhauer, S. Westerberg, M. Johnson, X. Tu, T. Dennis, G. Harley, G. Solomon, S. Rim, M. Shepherd, S. Harrington, M. Defensor, A. Leygo, P. Tomada, J. Wu, T. Pass, L. Ann, L. Smith, N. Bergstrom, C. Nicdao, P. Tipones, and D. Vicente, “Generation III high efficiency lower cost technology: Transition to full scale manufacturing,” in: Proc. 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 001594, 2012.
[117] D.D. Smith, P.J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in: Proc. 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, USA, 0908, 2013.
[118] A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, and S.W. Glunz, “n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation,” Solar Energy Materials & Solar Cells 173, 96 (2017).
[119] Looking back at the passivating contact workshop. Available: https://www.atomiclimits.com
[120] M. Bivour, “Silicon Heterojunction Solar Cells: Analysis and Basic Understanding” PhD thesis, University of Freiburg (2015).
[121] U. Würfel, A. Cuevas, and P. Würfel “Charge carrier separation in solar cells,” IEEE Journal of Photovoltaics 5(1), 461 (2015).
[122] P. Würfel, “Physics of Solar Cells - From Principles to New Concepts,” WILEY-VCH Verlag GmbH & Co. KGaA (2005).
[123] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics, “Addison-Wesley, Reading, Mass. (1958).
[124] W.-C. Lee, C. Hu, “Modeling CMOS tunneling current through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling,” IEEE Transactions on Electron Devices 48(7), 1366 (2001).
[125] R. Brendel, T. Dullweber, R. Gogolin, H. Hannebauer, N.-P. Harder, J. Hensen, S. Kajari-Schroeder, R. Peibst, J.H. Petermann, U. Römer, J. Schmidt, H. Schulte-Huxel, and V. Stechenreiter, “Recent progress and options for future crystalline silicon solar cells,” in: Proc. 28th EUPVSEC, Paris, France, (2013).
[126] U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, E. Bugiel, T. Wietler, and R. Brendel, “Recombination behavior and contact resistance of n+, and p+, poly-crystalline Si/mono-crystalline Si junctions. Solar Energy Materials & Solar Cells 131, 85 (2014).
[127] F. Feldmann, R. Müller, C. Reichel, and M. Hermle, “Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells,” physica status solidi (RRL) - Rapid Research Letters 8, 767 (2014).
[128] J. Tong, X. Wang, Z. Ouyang, andA. Lennon, “Ultra-thin tunnel oxides formed by field-induced anodisation for carrier-selective contacts,” Energy Procedia 77, 840 (2015).
[129] Y. Tao, V. Upadhyaya, K. Jones, and A. Rohatgi, “Tunnel oxide passivated rear contact for large area ntype front junction silicon solar cells providing excellent carrier selectivity,” AIMS Materials Science 3(1), 180 (2016)
[130] F. Haase, F. Kiefer, J. Krugener, R. Brendel, and R. Peibst, “IBC solar cells with polycrystalline on oxide (POLO) passivating contacts for both polarities,” in: Proc. 26th International Photovoltaic Science and Engineering Conference (PVSEC-26), Singapore, (2016).
[131] G. Yang, A. Ingenito, O. Isabella, and M. Zeman, “IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts,” Solar Energy Materials & Solar Cells 158, 84 (2016).
[132] M. Rienäcker, A. Merkle, U. Römer, H. HeikeKohlenberg, J. Krügener, R. Brendel, and R. Peibst, “Recombination behavior of photolithography-free back junction back contact solar cells with carrier-selective polysilicon on oxide junctions for both polarities,” Energy Procedia 92, 412 (2016).
[133] S. Reiter, N. Koper, R. Reineke-Koch, Y. Larionova, M. Turcu, J. Krügener, D. Tetzlaff, D. T. Wietler, U. Höhne, J.-D. Kähler, R. Brendel, and R. Peibst, “Parasitic absorption in polycrystalline Si-layers for carrier-selective front junctions,” Energy Procedia 92, 199 (2016).
[134] R. Peibst, U. Römer, Y. Larionova, M. Rienäcker, A. Merkle, N. Holchert, S. Reiter, M. Turcu, B. Min, J. Krügener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel, “Working principle of carrier selective poly-Si/c-Si junctions: Is tunneling the whole story?,” Solar Energy Materials & Solar Cells 158, 60 (2016).
[135] B. Stegemann, K.M. Gad, P. Balamou, D. Sixtensson, D. Vössing, M. Kasemann, and H. Angermann, “Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities,” Applied Surface Science 395, 78 (2017).
[136] F. Feldmann, C. Reichel, R. Müller, and M. Hermle, “The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells,” Solar Energy Materials & Solar Cells 159, 265 (2017).
[137] M. Rienäcker, M. Bossmeyer, A. Merkle, U. Römer, F. Haase, J. Krügener, R. Brendel, and R. Peibst, “Junction resistivity of carrier-selective polysilicon on oxide junctions and its impact on solar cell performance,” IEEE Journal of Photovoltaics 7, 11 (2017).
[138] F. Haase, C. Hollemann, S. Schäfer, A. Merkle, M. Rienäcker, J. Krügener, R. Brendel, and R. Peibst, “Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells,” Solar Energy Materials & Solar Cells 186, 184 (2018).
[139] A. Richter, J. Benick, R. Müller, F. Feldmann, C. Reiche, M. Hermle, and S.W. Glunz, “Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells,” Progress in Photovoltaics: Research and Applications 26, 579 (2018).
[140] M.I. Vexler, S.E. Tyaginor, and A.F. Shulekin, "Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor," Journal of Physics: Condensed Matter 17, 8057 (2005).
[141] Sentaurus TCAD, Release J-2014.09, Synopsys, Zürich, Switzerland.
[142] A.S. Kale, W. Nemeth, S.P. Harvey, M. Page, D.L. Young, S. Agarwal, and P. Stradins, "Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells," Solar Energy Materials and Solar Cells 185, 270 (2018).
[143] D.L. Young, W. Nemeth, S. Grover, A. Norman, B.G. Lee, amd P. Stradins, “Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides,” Proceedings of the 40th IEEE Photovoltaic Specialist Conference (PVSC), Denver, USA, 2014.
[144] S.W. Glunz, D. Biro, S. Rein, and W. Warta, "Field-effect passivation of the SiO2-Si interface," Journal of Applied Physics 86(1), 683 (1999)
[145] S. Dauwe, J. Schmidt, A. Metz, and R. Hezel, “Fixed charge density in silicon nitride films on crystalline silicon surfaces under illumination,” in: Proc. 29th IEEE Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2002.
[146] J.-F. Lelièvre, E. Fournmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, “Study of the composition of hydrogenated silicon nitride SiNx:H for efficient surface and bulk passivation of silicon,” Solar Energy Materials & Solar Cells 93, 1281 (2009).
[147] B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, and W.M.M. Kessels, "On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3," Journal of Applied Physics 104, 113703 (2008).
[148] H.C. de Graaff, and J.G. de Groot, “The SIS tunnel emitter- a theory for emitters with thin interface layers,” IEEE Transactions with Electron Devices ED-26(11), 1771(1979).
[149] I.R.C. Post, P. Ashburn, and G.R. Wolstenholme, “Polysilicon emitters for bipolar transistors: A review and re-evalution of theory and experiment,” IEEE Transactions on Electron Devices 39(7), 1717 (1992).
[150] R. Peibest, U. Römer, K.R. Hofmann, B. Lim, T.F. Wietler, J. Krügener, N.-P. Harder, and R. Brendel, “A simple model describing the symmetric I-V characteristics of p polycrystalline Si/n monocrystalline Si, and n polycrystalline Si/p monocrystalline Si junctions,” IEEE Journal of Photovoltaics 4(3), 841 (2014).
[151] H. Watanabe, D. Matsushita, and K. Muraoka, “Determination of tunnel mass and physical thickness of gate oxide including poly-Si/SiO2 and Si/SiO2 interfacial transition layers,” IEEE Transaction on Electron Devices 53(6), 1323 (2006).
[152] R. Waters and B. van Zeghbroeck, “Fowler-Nordheim tunneling of holes through thermally grown SiO2 on p+ 6H-SiC,” Applied Physics Letters 73, 3692 (1998).
[153] R.K. Chanana, “Determination of hole effective mass in SiO2 and SiC conduction band offset using Fowler-Nordheim tunneling characteristics across metal-oxide-semiconductor structures after applying oxide field corrections,” Journal of Applied Physics 109, 104508 (2011).
[154] J.Y. Gan, and R.M. Swanson, “Polysilicon emitters for silicon concentrator solar cells,” Proceedings of the 21st IEEE Photovoltaic Specialists Conference, 245, 1990.
[155] J.C. Lee, private communication.
[156] D. Yan, A. Cuevas, J. Bullock, Y. Wan, and C. Samundsett, “Phosphorus-diffused polysilicon contacts for solar cells,” Solar Energy Materials & Solar Cells 142, 75 (2015).
[157] M. Rienächer, M. Bossmeyer, A. Merkle, U. Römer, Felix Haase, J. Krügener, R. Brendel, and R. Peibst, “Junction resistivity of carrier-selective polysilicon on oxide junctions and its impact on solar cell performance,” IEEE Journal of Photovoltaics 7(1), 11 (2017).
[158] R. van der Vossen, F. Feldmann, A. Moldovan, and M. Hermle, “Comparative study of differently grown tunnel oxides for p-type passivating contacts,” Energy Procedia 124, 448 (2017).
[159] J.Y. Gan, “Polysilicon emitters for silicon concentrator solar cells,” Ph.D. Thesis, 1990.
[160] Industrial Technology Research Institute, private communication.
[161] Giga Solar Material Corp., private communication.
[162] K. Kobayashi, H. Unno, H. Takizawa and S. Adachi, “Chemical treatment effect of Si(111) surfaces in H2SO4:H2O2 solution,” Japanese Journal of Applied Physics 35, 5925 (1996).
[163] Y.Y. Chen, P.Y. Hsin, C. Leendertz, L. Korte, B. Rech, C.H. Du, and J.Y. Gan, “Field-effect passivation and degradation analyzed with photoconductance decay measurements,” Applied Physics Letters 104, 193504 (2014).
[164] D. Zhang, A.S. Shaikh, S. Sridharan, H. Khari, H. Jiang, and G.E. Graddy, “Fire through aluminum paste for SiNx and better BSF formation,” US patent, no. US20140373909A1.
[165] E. Navarrete, A. Kimmerle, B. Thaidigsmann, R. Woehl, J.R. Ramos-Barrado, and D. Biro, “Evaluation of fire-through aluminum pastes for local contact formation in silicon solar cells,” in: Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France (2013).
[166] D. Rudolph, T. Buck, A. Teppe, F.B. Masouleh, and R. Harney, “Fire through aluminum gird paste for bifacial solar cells,” Energy Procedia 92, 971 (2016).
[167] A. Kumar, M. Bieri, T. Reindl, and A.G. Aberle, “Economic viability analysis of silicon solar cell manufacturing: Al-BSF versus PERC,” Energy Procedia 130, 43 (2017).
[168] F. Huster, “Investigation of the alloying process of screen-printed aluminum pastes for the BSF formation on silicon solar cells,” in: Proc. 20th Europe Photovoltaic Solar Energy Conference Exhibition, Barcelona, Spain, 1466, (2005).
[169] P.V. Zant, “Microchip fabrication: A practical guide to semiconductor processing,” 6th Edition, McGraw-Hill Education (2014).
[170] M. Rauer, C. Schmiga, M. Glatthaar, and S.W. Glunz, “Alloying from screen-printed aluminum pasts containing boron additives,” IEEE Journal of Photovoltaics 3(1), 206 (2012).
[171] M. Rauer, C. Schmiga, A. Tuschinsky, M. Glatthaar, and S.W. Glunz, “Investigation of aluminum-boron doping profiles formed by coalloying from screen-printed pastes,” Energy Procedia 43, 93 (2013).
[172] M. Rauer, H. Steinkemper, C. Schmiga, M. Glatthaar, and S.W. Glunz, “Recombination characteristics of p+ regions alloyed from screen-printed aluminum pastes containing boron additives,” in: Proc. 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, Netherlands (2014).
[173] E. Franklin, K. Fong, K. Mclntosh, A. Fell, A. Blakers, T. Kho, D. Walter, D. Wang, N. Zin, M. Stocks, E.-C. Wang, N. Grant, Y. Wan, Y. Yang, X. Zhang, Z. Feng, and P.J. Verlinden, “Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell,” Progress Photovoltaics 24, 411 (2016).
[174] B. Benna, T.F. Mewer and H. Schaber Siemens, “The role of the interfacial layer in bipolar (poly-Si) emitter transistors,” Solid-Stare Electronics 30(II), 1153 (1987).
[175] D.J. Dimariz and E. Cartier, “Mechanism for stress-induced leakage currents in thin silicon dioxide films,” Journal of Applied Physics 78(6), 3883 (1995).