研究生: |
魏毓德 Wey, Yu-Te |
---|---|
論文名稱: |
低價數寡鍺化合物的合成研究 Synthesis of Low-Valent Oligonuclear Germanium Complexes |
指導教授: |
蔡易州
Tsai, Yi-Chou |
口試委員: |
尤禎祥
Yu, Jen-Shiang 劉學儒 Liu, Hsueh-Ju |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 直鏈式四核異金屬 、鍺八員環化合物 、S形金屬鏈化合物 、直線形混價三核鍺金屬化合物 |
外文關鍵詞: | mixed Ge-M tetranuclear complexes, an unprecedented cyclic octagermylene complex, the S-type mixed hexanuclear complexes, linear mixed-valent trinuclear complexes |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
去質子化的吡啶雙胺基配位基[2,6-(2,6-iPr2C6H3-NH)2-4-CH3C5H2N] (H2N2NDipp)與二價氯化鍺反應經鉀石墨還原可以合成出一價雙核鍺化合物 [K2{Ge2(μ-κ2:η2:η4-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (2),化合物2與二氯化鍺和二氯化錫反應生成四核混價鍺化合物[(GeCl)2{Ge2(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (3)及混價異核鍺-錫化合物[(SnCl)2{Ge2(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (4)。因此一系列的多鍺化合物2到4隨後被合成出來。
將2與MCl3 (M = Al, Ga),成功合成出第一個含有MIIIGeI2MIII形式的直鏈式四核異金屬化合物,分別為化合物[(MCl2)2{Ge2(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (M = Al (5), Ga (7))。另外,我們還原化合物3可得到前所未有的鍺八員環化合物[Ge4(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2]2 (11),11同時具有順式彎曲(cis-bent)和偏折彎曲(gauche-bent)的構形及包含三種不同鍵結形式的鍺-鍺鍵;當再進行兩個電子還原時,可得到S形的六鍺化合物[K{Ge3(μ-κ2:κ1:η1:η3-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}]2 (15)。然而使用相同的方法將化合物4還原後只可以得到S形的四鍺二錫化合物[K{Ge2Sn(μ-κ2:κ1:η1:η3-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}]2 (17)。相較於鍺八員環化合物,S形金屬鏈化合物則是擁有順式彎曲(cis-bent)和反折彎曲(trans-bent)的構形。
使用立體阻礙較小的配位基[2,6-(2,6-Et2C6H3-N)2-4-CH3C5H2N] (N2NDep)和[2,6-(2,4,6-Me3C6H2-N)2-4-CH3C5H2N] (N2NMes)同樣可以分別合成出雙核鍺化合物[Ge(μ-κ1:κ2-2,6-R2-4-CH3C5H2N)]2 (R = 2,6-Et2C6H3-N (19), 2,4,6-Me3C6H2-N (20))。將化合物19和20與鉀石墨反應,可以得到新穎的直線形混價三核鍺金屬化合物Ge3[μ-κ2-2,6-R2-4-CH3C5H2N]2 (R = 2,6-Et2C6H3-N (22), 2,4,6-Me3C6H2-N(23)),打破以往多鍺金屬鏈都是以類烷類的構形排列。有趣的是,提高鉀石墨的當量數,配位基為立體阻礙較大的化合物會得到六核鍺金屬鏈化合物[K{Ge3(μ-κ2:κ1:η1:η1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}]2 (24);相反地,若是配位基為立體阻礙較小的化合物則是會析出鍺金屬形成鉀鹽化合物。
The GeI-GeI bonded digermylene complex [K2{Ge2(μ-κ2:η2:η4-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (2) was prepared by mixing GeCl2 and the deprotonated 2,6-aminopyridine [2,6-(2,6-iPr2C6H3-NH)2-4-CH3C5H2N] (H2N2NDipp) followed by KC8 reduction. Complex 2 reacted with GeCl2·dixoane and SnCl2, respectively, to produce tetranuclear species [(MCl)2{Ge2(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (M = Ge (3), Sn (4)). From 2 to 4, a series of catented germanes were subsequently prepared.
The reaction of 2 with MCl3 (M = Al, Ga) led to the isolation of the first example of mixed Ge-M tetranuclear complexes [(MCl2)2{Ge2(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}] (M = Al (5), Ga (7)) containing a central core of MIIIGeI2MIII. In addition, 3 was employed as a building block to assemble an unprecedented cyclic octagermylene complex [Ge4(μ-κ2:κ1-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2]2 (11), which displays cis-bent and gauche-bent Ge-Ge linkages and contains three types of Ge(I)-Ge(I) bonds. Morever, by adding more two electrons to complex 11, we were able to characterize an all-univalent hexagermylene complex [K{Ge3(μ-κ2:κ1:η1:η3-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}]2 (15) with an S conformation. On the other hand, KC8 reduction of 4 only yielded the S type mixed hexanuclear complex [K{Ge2Sn(μ-κ2:κ1:η1:η3-2,6-(2,6-iPr2C6H3-N)2-4-CH3C5H2N)2}]2 (17). In contrast to cyclic octagermylene complex 11, the S-type mixed hexanuclear complexes 15 and 17 display only cis-bent and trans-bent conformations.
Meanwhile, we also developed a series of less hindered ligands [2,6-(2,6-Et2C6H3-N)2-4-CH3C5H2N] (N2NDep) and [2,6-(2,4,6-Me3C6H2-N)2-4-CH3C5H2N] (N2NMes) for the preparation of oligomeric germanium complexes. Two dinuclear divalent Ge complexes [Ge(μ-κ1:κ2-2,6-R2-4-CH3C5H2N)]2 (R = 2,6-Et2C6H3-N (19), 2,4,6-Me3C6H2-N (20)) were synthesized upon mxing GeCl2 and the deprotonated ligands. Complexes 19 and 20 were reduced by 1 equiv of KC8 to give two linear mixed-valent trinuclear complexes Ge3[μ-κ2-2,6-(R)2-4-CH3C5H2N]2 (R = 2,6-Et2C6H3-N (22), 2,4,6-Me3C6H2-N (23)). Both 22 and 23 are the first examples of catented germanes exhibiting a linear conformation. In contrast to the reduction of 11 generating the S-shpae hexagermanium complex 15, further KC8 reduction of 22 and 23 gave potassium-containing deprotonated ligands.
1. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Science 1964, 145, 1305-1307.
2. Dedieu, A.; Albright, T. A.; Hoffmann, R., J. Am. Chem. Soc. 1979, 101, 3141-3151.
3. Lewis, G. N., J. Am. Chem. Soc. 1916, 38, 762-785.
4. Cotton, F. A., Q. Rev. Chem. Soc. 1966, 20, 389-401.
5. Horvath, S.; Gorelsky, S. I.; Gambarotta, S.; Korobkov, I., Angew. Chem. Int. Ed. 2008, 47, 9937-9940.
6. Hsu, C. W.; Yu, J. S. K.; Yen, C. H.; Lee, G. H.; Wang, Y.; Tsai, Y. C., Angew. Chem. Int. Ed. 2008, 47, 9933-9936.
7. Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S., J. Am. Chem. Soc. 2009, 131, 12534-12535.
8. Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P., Angew. Chem. Int. Ed 2002, 41, 1785-1787.
9. Power, P. P., Nature 2010, 463, 171-177.
10. Pu, L.; Senge, M. O.; Olmstead, M. M.; Power, P. P., J. Am. Chem. Soc. 1998, 120, 12682.
11. Sugiyama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N., J. Am. Chem. Soc. 2006, 128, 1023-1031.
12. Hadlington, T. J.; Hermann, M.; Li, J.; Frenking, G.; Jones, C., Angew. Chem. Int. Ed. 2013, 52, 10199-10203.
13. Wiberg, K. B., Acc. Chem. Res. 1996, 29, 229-234.
14. Wang, Y.; Robinson, G. H., Chem. Comm. 2009, (35), 5201-5213.
15. Power, P. P., Chem. Rev 1999, 99, 3463-3503.
16. Fischer, R. C.; Power, P. P., Chem. Rev. 2010, 110, 3877-3923.
17. Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M., J. Chem. Soc. Chem. Commun. 1976, 261-262.
18. WEST, R.; FINK, M. J.; MICHL, J., Science 1981, 214, 1343-1344.
19. Stürmann, M.; Weidenbruch, M.; Klinkhammer, K. W.; Lissner, F.; Marsmann, H., Organometallics 1998, 17, 4425-4428.
20. Sekiguchi, A.; Kinjo, R.; Ichinohe, M., Science 2004, 305, 1755-1757.
21. Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P., J. Am. Chem. Soc. 2002, 124, 5930-5931.
22. Pu, L.; Twamley, B.; Power, P. P., J. Am. Chem. Soc. 2000, 122, 3524-3525.
23. Spikes, G. H.; Fettinger, J. C.; Power, P. P., J. Am. Chem. Soc. 2005, 127, 12232-12233.
24. Peng, Y.; Brynda, M.; Ellis, B. D.; Fettinger, J. C.; Rivard, E.; Power, P. P., Chem. Comm. 2008, 6042-6044.
25. Power, P. P., Organometallics 2007, 26, 4362-4372.
26. Cui, C.; Olmstead, M. M.; Fettinger, J. C.; Spikes, G. H.; Power, P. P., J. Am. Chem. Soc. 2005, 127, 17530-17541.
27. Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C., J. Am. Chem. Soc. 2014, 136, 3028-3031.
28. Sasamori, T.; Sugahara, T.; Agou, T.; Guo, J.-D.; Nagase, S.; Streubel, R.; Tokitoh, N., Organometallics 2015, 34, 2106-2109.
29. Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N., Angew. Chem. Int. Ed. 2018, 57, 3499-3503.
30. Hua, S. A.; Tsai, Y. C.; Peng, S. M., J. Chin. Chem. Soc. 2014, 61, 9-26.
31. Wu, L.-P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.; Hathaway, B.; Simmons, C.; Thornton, P., J. Chem. Soc., Dalton Trans. 1990, 3835-3840.
32. Pyrka, G. J.; El-Mekki, M.; Pinkerton, A. A., J. Chem. Soc., Chem. Commun., 1991, 84-85.
33. Aduldecha, S.; Hathaway, B., J. Chem. Soc., Dalton Trans. 1991, 993-998.
34. Shie-Ming, P. 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers), 2005; p 519 vol.2.
35. Clérac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X., Inorg. Chem. 1999, 38, 2655-2657.
36. Albert Cotton, F.; M. Daniels, L.; A. Murillo, C.; Wang, X.; A. Murillo, C., Chem. Comm. 1999, 2461-2462.
37. Clérac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X., J. Am. Chem. Soc. 2000, 122, 6226-6236.
38. Sheu, J.-T.; Lin, C.-C.; Chao, I.; Wang, C.-C.; Peng, S.-M., Chem. Comm. 1996, 315-316.
39. Yeh, C.-Y.; Chou, C.-H.; Pan, K.-C.; Wang, C.-C.; Lee, G.-H.; Su, Y. O.; Peng, S.-M., J. Chem. Soc., Dalton Trans., 2002, 2670-2677.
40. Lai, S.-Y.; Lin, T.-W.; Chen, Y.-H.; Wang, C.-C.; Lee, G.-H.; Yang, M.-h.; Leung, M.-k.; Peng, S.-M., J. Am. Chem. Soc. 1999, 121, 250-251.
41. Wang, C.-C.; Lo, W.-C.; Chou, C.-C.; Lee, G.-H.; Chen, J.-M.; Peng, S.-M., Inorg. Chem. 1998, 37, 4059-4065.
42. Peng, S.-M.; Wang, C.-C.; Jang, Y.-L.; Chen, Y.-H.; Li, F.-Y.; Mou, C.-Y.; Leung, M.-K., J. Magn. Magn. Mater. 2000, 209, 80-83.
43. H., I. R.; Wen‐Zhen, W.; Gene‐Hsiang, L.; Chen‐Yu, Y.; Shao‐An, H.; You, S.; Marie‐Madeleine, R.; Marc, B.; Shie‐Ming, P., Angew. Chem. Int. Ed. 2011, 50, 2045-2048.
44. Yu‐Lun, H.; Duan‐Yen, L.; Hsien‐Cheng, Y.; K., Y. J. S.; Chia‐Wei, H.; Ting‐Shen, K.; Gene‐Hsiang, L.; Yu, W.; Yi‐Chou, T., Angew. Chem. Int. Ed. 2012, 51, 7781-7785.
45. 呂端晏, 國立清華大學化學研究所博士論文 2011.
46. 游憲政, 國立清華大學化學研究所碩士論文 2012.
47. 張雅惠, 國立清華大學化學研究所碩士論文 2014.
48. Satyachand, H. N. V.; Bo-Han, W.; Duan-Yen, L.; Ting-Shen, K.; I-Chia, C.; Yi-Chou, T., Angew. Chem. Int. Ed. 2018.
49. Bukalov, S. S.; Leites, L. A.; Krylova, I. V.; Egorov, M. P., J. Organomet. Chem. 2001, 636, 164-171.
50. Kodaira, T.; Watanabe, A.; Ito, O.; Matsuda, M.; Tokura, S.; Kira, M.; Nagano, S. S.; Mochida, K., Adv. Mater. 1995, 7, 917-919.
51. Weinert, C. S., Dalton Trans. 2009, (10), 1691-1699.
52. Amadoruge, M. L.; Weinert, C. S., Chem. Rev. 2008, 108, 4253-4294.
53. Shankar, R.; Saxena, A.; Brar, A. S., J. Organomet. Chem. 2002, 650, 223-230.
54. Kimata, Y.; Suzuki, H.; Satoh, S.; Kuriyama, A., Organometallics 1995, 14, 2506-2511.
55. Kashimura, S.; Ishifune, M.; Yamashita, N.; Bu, H.-B.; Takebayashi, M.; Kitajima, S.; Yoshiwara, D.; Kataoka, Y.; Nishida, R.; Kawasaki, S.-i.; Murase, H.; Shono, T., J. Org. Chem. 1999, 64, 6615-6621.
56. Sita, L. R.; Terry, K. W.; Shibata, K., J. Am. Chem. Soc. 1995, 117, 8049-8050.
57. Sita, L. R., Acc. Chem. Res. 1994, 27, 191-197.
58. Imori, T.; Lu, V.; Cai, H.; Tilley, T. D., J. Am. Chem. Soc. 1995, 117, 9931-9940.
59. Okano, M.; Matsumoto, N.; Arakawa, M.; Tsuruta, T.; Hamano, H., Chem. Comm. 1998, 1799-1800.
60. Komoriya, H.; Kako, M.; Nakadaira, Y.; Mochida, K., Organometallics 1996, 15, 2014-2018.
61. Hlina, J.; Baumgartner, J.; Marschner, C., Organometallics 2010, 29, 5289-5295.
62. Mallela, S. P.; Geanangel, R. A., Inorg. Chem. 1991, 30, 1480-1482.
63. Castel, A.; Riviere, P.; Saint-Roch, B.; Satgé, J.; Malrieu, J. P., J.organomet. chem. 1983, 247, 149-160.
64. Ross, L.; Dräger, M., J. Organomet. Chem. 1980, 199, 195-204.
65. Braddock-Wilking, J.; Bandrowsky, T.; Praingam, N.; Rath, N. P., Organometallics 2009, 28, 4098-4105.
66. Arii, H.; Nanjo, M.; Mochida, K., Organometallics 2008, 27, 4147-4151.
67. Kamiya, I.; Iida, K.; Harato, N.; Li, Z.-f.; Tomisaka, Y.; Ogawa, A., Journal of Alloys and Compounds 2006, 408-412, 437-440.
68. Davidson, P. J.; Lappert, M. F., J. Chem. Soc., Chem. Commun. 1973, 317.
69. Sen, S. S.; Khan, S.; Samuel, P. P.; Roesky, H. W., Chem. Sci. 2012, 3, 659-682.
70. Wang, Y.; Robinson, G. H., Inorg. Chem. 2014, 53, 11815-11832.
71. Chen, M.; Wang, Y.; Xie, Y.; Wei, P.; Gilliard, R. J.; Schwartz, N. A.; Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H., Chem. Eur. J. 2014, 20, 9208-9211.
72. Sen, S. S.; Kratzert, D.; Stern, D.; Roesky, H. W.; Stalke, D., Inorg. Chem. 2010, 49, 5786-5788.
73. Khoo, S.; Yeong, H.-X.; Li, Y.; Ganguly, R.; So, C.-W., Inorg. Chem. 2015, 54, 9968-9975.
74. Ismail, M. L. B.; Liu, F.-Q.; Yim, W.-L.; Ganguly, R.; Li, Y.; So, C.-W., Inorg. Chem. 2017, 56, 5402-5410.
75. 楊凡陞, 國立清華大學化學研究所碩士論文 2010.
76. Well, A. F., Structural Inorganic Chemistry, 5th ed., Oxford, 1984, p. 1279.
77. Baines, K. M.; Stibbs, W. G., Adv. organomet. chem 1996, 39, 275.
78. Habereder, T.; Knabel, K.; Nöth, H., Eur. J. Inorg. Chem. 2001, 5, 1127.
79. Habereder, T.; Nöth, H.; Suter, M. Z., Naturforsch. 2009, 64b, 1387.
80. Purath, A.; Dohmeier, C.; Baum, E.; Köppe, R.; Schnöckel, H. Z., Anorg. Allg. Chem. 1999, 625, 2144.
81. Erickson, J. D.; Fettinger, J. C.; Power, P. P., Inorg. Chem. 2015, 54, 1940.
82. Liang, L.-C.; Huang, M.-H.; Hung, C.-H., Inorganic Chemistry 2004, 43, 2166.
83. Green, S. P.; Jones, C.; Lippert, K.-A.; Mills, D. P.; Stasch, A., Inorg. chem. 2006, 45, 7242-7251.
84. Rupar, P. A.; Jennings, M. C.; Baines, K. M., Can. J. Chem. 2007, 85, 141-147.
85. Richards, A. F.; Brynda, M.; Power, P. P., Organometallics 2004, 23, 4009-4011.
86. Wey, Y.-T.; Yang, F.-S.; Yu, H.-C.; Kuo, T.-S.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2017, 56, 15108-15112.
87. Sasamori, T.; Hironaka, K.; Sugiyama, Y.; Takagi, N.; Nagase, S.; Hosoi, Y.; Furukawa, Y.; Tokitoh, N., J. Am. Chem. Soc. 2008, 130, 13856-13857.
88. Jones, C.; Bonyhady, S. J.; Holzmann, N.; Frenking, G.; Stasch, A., Inorg. Chem. 2011, 50, 12315-12325.
89. Wang, W.; Inoue, S.; Yao, S.; Driess, M., Chem. Commun. 2009, 2661-2663.
90. Leung, W.-P.; Chiu, W.-K.; Chong, K.-H.; Mak, T. C. W., Chem. Commun. 2009, 6822-6824.
91. Chia, S.-P.; Yeong, H.-X.; So, C.-W., Inorg. Chem. 2012, 51, 1002-1010.
92. Li, J.; Schenk, C.; Goedecke, C.; Frenking, G.; Jones, C., J. Am. Chem. Soc. 2011, 133, 18622-18625.
93. Novák, M.; Bouška, M.; Dostál, L.; Růžička, A.; Hoffmann, A.; Herres-Pawlis, S.; Jambor, R., Chem. Eur. J 2015, 21, 7820-7829.
94. Peng, Y.; Fischer, R. C.; Merrill, W. A.; Fischer, J.; Pu, L.; Ellis, B. D.; Fettinger, J. C.; Herber, R. H.; Power, P. P., Chem. Sci. 2010, 1, 461-468.
95. Takagi, N.; Nagase, S., Organometallics 2001, 20, 5498.
96. Jung, Y.; Brynda, M.; Power, P. P.; Head-Gordon, M., J. Am. Chem. Soc. 2006, 128, 7185.
97. Green, S. P.; Jones, C.; Junk, P. C.; Lippert, K.-A.; Stasch, A., Chem. Commun. 2006, 3978-3980.
98. Nagendran, S.; Sen, S. S.; Roesky, H. W.; Koley, D.; Grubmüller, H.; Pal, A.; Herbst-Irmer, R., Organometallics 2008, 27, 5459-5463.
99. Neumann, W. P.; Kühlein, K., Tetrahedron Lett. 1963, 4, 1541-1545.
100. Mallela, S. P.; Geanangel, R. A., Inorg. Chem. 1994, 33, 1115-1120.
101. Mochida, K.; Kanno, N.; Kato, R.; Kotani, M.; Yamauchi, S.; Wakasa, M.; Hayashi, H., J. Organomet. Chem. 1991, 415, 191-201.
102. Lollmahomed, F.; Leigh, W. J., Organometallics 2009, 28, 3239-3246.
103. Eichler, B. E.; Power, P. P., Angew. Chem. Int. Ed 2001, 40, 796-797.
104. Schnepf, A.; Köppe, R., Angew. Chem. Int. Ed 2003, 42, 911-913.
105. Su, T. A.; Li, H.; Zhang, V.; Neupane, M.; Batra, A.; Klausen, R. S.; Kumar, B.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C., J. Am. Chem. Soc. 2015, 137, 12400-12405.
106. Wang, W.; Yao, S.; van Wüllen, C.; Driess, M., J. Am. Chem. Soc. 2008, 130, 9640-9641.
107. Yeong, H.-X.; Xi, H.-W.; Li, Y.; Kunnappilly, S. B.; Chen, B.; Lau, K.-C.; Hirao, H.; Lim, K. H.; So, C.-W., Chem. Eur. J. 2013, 19, 14726-14731.
108. Weidenbruch, M.; Grimm, F.-T.; Herrndorf, M.; Schäfer, A.; Peters, K.; von Schnering, H. G., J. Organomet. Chem. 1988, 341, 335-343.
109. Kobayashi, K.; Nagase, S., Organometallics 1997, 16, 2489-2491.
110. Windus, T. L.; Gordon, M. S., J. Am. Chem. Soc 1992, 114, 9559-9568.
111. Richards, A. F.; Hope, H.; Power, P. P., Angew. Chem. Int. Ed. 2003, 42, 4071-4074.
112. Katir, N.; Matioszek, D.; Ladeira, S.; Escudié, J.; Castel, A., Angew. Chem. Int. Ed. 2011, 50, 5352-5355.
113. Schäfer, A.; Saak, W.; Weidenbruch, M., Organometallics 2003, 22, 215-217.
114. Jambor, R.; Kašná, B.; Kirschner, K. N.; Schürmann, M.; Jurkschat, K., Angew. Chem. Int. Ed. 2008, 47, 1650-1653.
115. Chia, S.-P.; Ganguly, R.; Li, Y.; So, C.-W., Organometallics 2012, 31, 6415-6419.
116. Khan, S.; Michel, R.; Dieterich, J. M.; Mata, R. A.; Roesky, H. W.; Demers, J.-P.; Lange, A.; Stalke, D., J. Am. Chem. Soc 2011, 133, 17889-17894.
117. Choong, S. L.; Schenk, C.; Stasch, A.; Dange, D.; Jones, C., Chem. Commun. 2012, 48, 2504-2506.
118. Li, Y.; Mondal, K. C.; Lubben, J.; Zhu, H.; Dittrich, B.; Purushothaman, I.; Parameswaran, P.; Roesky, H. W., Chem. Commun. 2014, 50, 2986-2989.
119. Podall, H.; Foster, W. E.; Giraitis, A. P., J. org. chem. 1958, 23, 82-85.