簡易檢索 / 詳目顯示

研究生: 易書瑋
Yi, Shu-wei
論文名稱: 多目標波束成形設計於多輸入單輸出正交分頻多工感知無線電系統
Multi-objective Beamforming Design for Multiuser MISO OFDM Cognitive Radio Systems
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 吳仁銘
Wu, Jen-Ming
洪樂文
Hong, Yao-Win
翁詠祿
Ueng, Yeong-Luh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 44
中文關鍵詞: 隱藏式感知無線電系統多目標最佳化問題線性矩陣不等式波束成形Pareto 最佳解
外文關鍵詞: Underlay Cognitive Radio System, Multi-objective optimization design, linear matrix inequality (LMI), transmit beamforming, Pareto optimal solutions
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個基於多輸入單輸出正交多工系統的隱藏式感知無線系統,並且是考慮到通道估測不確定性的模型。在此系統中,為了達到次使用者的通訊服務品質以及主使用者的干擾減免的多目標問題,波束成形被利用來同時解決次使用者的最佳通訊服務品質和主使用者的最佳干擾減免的多目標問題。首先,一個基於二次約束的多目標最佳化問題被提出來描述感知無線電系統的多個目標和約束。接著,根據極大極小代換式將一個同時極大化次使用者通訊服務品質和極小化主使用者干擾的多目標波束成形設計問題,轉換成同時極小化最糟情形下的次使用者負的訊號對干擾加雜訊比值(signal-to-interference-plus-noise-ratio)以及極小化最糟情形下的主使用者干擾溫度(interference temperature)的多目標問題。然而,本文所考慮的多目標問題仍然不容易解決,因此我們提出的一個間接方法是透過不斷壓低各個目標的上界值來解決主使用者干擾減免和次使用者通訊品質改善的多目標波束成形設計問題。為了方便加速計算,再將問題轉換成線性矩陣不等式約束的多目標問題。再接著,我們提出一個基於線性矩陣不等式的多目標基因演化搜尋方法來獲取Pareto最佳解,並且為系統設計者提供一個選取最佳改進的程序來取得偏好的唯一波束成形設計。最後,一系列的數值模擬和設計流程說明用來證明這個波束成形設計方法對於我們提出的次使用者通訊服務品質和主使用者干擾溫度的多目標問題在多輸出多輸入正交多工系統的隱藏式感知無線系統上的表現。


    In this study, we consider a multi-input-single-output (MISO) orthogonal frequency division multiplexing (OFDM) underlay cognitive radio system with channel uncertainty. In order to solve the multi-objective secondary user’s QoS enhancement and primary user’s interference mitigation problem in this system, a multi-objective beamforming design method is introduced for cognitive radio systems to guarantee optimal secondary user’s QoS performance and primary user’s interference power simultaneously. First, a quadratic constrained optimization problem is derived to represent the cognitive radio system. Then, based on the mini-max formulation, the beamforming design for both secondary user’s QoS enhancement and primary user’s interference mitigation are formulated as a multi-objective optimization problem (MOP) to minimize the worst case of the negative signal-to-interference-plus-noise ratio (SINR) of secondary users and the interference temperature (IT) of primary users for the cognitive radio system at the same time. Since it is not easy to solve the MOP directly, an indirect method is proposed to solve this MOP for multi-objective beamforming design, by minimizing the corresponding upper bounds of two objectives. For the convenience of design, the multi-objective beamforming design problem is transformed to a linear matrix inequalities (LMIs)-constrained multi-objective optimization problem. Further, a LMIs-constrained multi-objective evolutionary algorithm (LMIs-constrained MOEA) is developed to efficiently solve the set of Pareto optimal solutions for the MOP, and an improvement optimization process is provided for designer to select one unique design according to his own preference. Finally, a numeric simulation is given to illustrate the design procedure and to demonstrate the performance of the proposed multi-objective beamforming design for cognitive radio system.

    致謝 i 摘要 ii Abstract iii Contents iv List of Figures v List of Tables vi 1 Introduction 1 2 System Model and Problem Formulation 6 2.1 System Description of Underlay CR system 6 2.2 Channel Uncertainty of Underlay CR system 10 2.3 Problem Formulation 11 3 Multi-objective Beamforming Design Based on Indirect Method 14 4 LMI-constrained MOEA Approach for Beamforming Design 19 4.1 MOEA Definition 19 4.2 Design Procedure of the Proposed MO beamforming 23 5 Simulation Results 25 5.1 Assumptions 25 5.2 Numeric results 27 6 Conclusion 35 Appendix 36 Reference 41

    [1] R. Zhang, M. Wang, L. X. Cai, Z. M. Zheng, X. M. Shen, and L. L. Xie, "LTE-unlicensed: The Future of Spectrum Aggregation for Cellular Networks," IEEE Wireless Communications, vol. 22, pp. 150-159, Jun 2015.
    [2] R. Murty, R. Chandra, T. Moscibroda, and P. Bahl, "SenseLess: A Database-Driven White Spaces Network," IEEE Transactions on Mobile Computing, vol. 11, pp. 189-203, Feb 2012.
    [3] E. Axell and E. G. Larsson, "Optimal and Sub-Optimal Spectrum Sensing of OFDM Signals in Known and Unknown Noise Variance," IEEE Journal on Selected Areas in Communications, vol. 29, pp. 290-304, Feb 2011.
    [4] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, "State-of-the-art and recent advances Spectrum Sensing for Cognitive Radio State-of-the-art and recent advances," IEEE Signal Processing Magazine, vol. 29, pp. 101-116, May 2012.
    [5] A. Patel and A. K. Jagannatham, "Non-Antipodal Signaling Based Robust Detection for Cooperative Spectrum Sensing in MIMO Cognitive Radio Networks," IEEE Signal Processing Letters, vol. 20, pp. 661-664, Jul 2013.
    [6] E. Bedeer, O. A. Dobre, M. H. Ahmed, and K. E. Baddour, "A Multiobjective Optimization Approach for Optimal Link Adaptation of OFDM-Based Cognitive Radio Systems with Imperfect Spectrum Sensing," IEEE Transactions on Wireless Communications, vol. 13, pp. 2339-2351, Apr 2014.
    [7] S. W. Wang, Z. H. Zhou, M. Y. Ge, and C. G. Wang, "Resource Allocation for Heterogeneous Cognitive Radio Networks with Imperfect Spectrum Sensing," IEEE Journal on Selected Areas in Communications, vol. 31, pp. 464-475, Mar 2013.
    [8] M. S. Ali and N. B. Mehta, "Modeling Time-Varying Aggregate Interference in Cognitive Radio Systems, and Application to Primary Exclusive Zone Design," IEEE Transactions on Wireless Communications, vol. 13, pp. 429-439, Jan 2014.
    [9] G. Zheng, K. K. Wong, and B. Ottersten, "Robust Cognitive Beamforming With Bounded Channel Uncertainties," IEEE Transactions on Signal Processing, vol. 57, pp. 4871-4881, Dec 2009.
    [10] Y. W. Huang, Q. Li, W. K. Ma, and S. Z. Zhang, "Robust Multicast Beamforming for Spectrum Sharing-Based Cognitive Radios," IEEE Transactions on Signal Processing, vol. 60, pp. 527-533, Jan 2012.
    [11] M. L. Ku, L. C. Wang, and Y. T. Su, "Toward Optimal Multiuser Antenna Beamforming for Hierarchical Cognitive Radio Systems," IEEE Transactions on Communications, vol. 60, pp. 2872-2885, Oct 2012.
    [12] Y. Zhang, E. Dall'Anese, and G. B. Giannakis, "Distributed Optimal Beamformers for Cognitive Radios Robust to Channel Uncertainties," IEEE Transactions on Signal Processing, vol. 60, pp. 6495-6508, Dec 2012.
    [13] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, "Local Base Station Cooperation Via Finite-Capacity Links for the Uplink of Linear Cellular Networks," IEEE Transactions on Information Theory, vol. 55, pp. 190-204, Jan 2009.
    [14] R. Mochaourab and E. A. Jorswieck, "Optimal Beamforming in Interference Networks with Perfect Local Channel Information," IEEE Transactions on Signal Processing, vol. 59, pp. 1128-1141, Mar 2011.
    [15] Y. Y. Pei, Y. C. Liang, L. Zhang, K. C. Teh, and K. H. Li, "Secure Communication over MISO Cognitive Radio Channels," IEEE Transactions on Wireless Communications, vol. 9, pp. 1494-1502, Apr 2010.
    [16] S. J. Kim and G. B. Giannakis, "Optimal Resource Allocation for MIMO Ad Hoc Cognitive Radio Networks," IEEE Transactions on Information Theory, vol. 57, pp. 3117-3131, May 2011.
    [17] Q. X. Zhang, Z. Y. Feng, T. Yang, and W. Li, "Optimal Power Allocation and Relay Selection in Multi-hop Cognitive Relay Networks," Wireless Personal Communications, vol. 86, pp. 1673-1692, Feb 2016.
    [18] A. M. Benaya, M. Shokair, E. El-Rabaie, and M. F. Elkordy, "Optimal Power Allocation for Sensing-Based Spectrum Sharing in MIMO Cognitive Relay Networks," Wireless Personal Communications, vol. 82, pp. 2695-2707, Jun 2015.
    [19] H. Rasouli, H. Y. Kong, and A. Anpalagan, "Cooperative Subcarrier Allocation and Power Allocation in the Downlink of an Amplify-and-Forward OFDM Relaying System," Wireless Personal Communications, vol. 79, pp. 2271-2290, Dec 2014.
    [20] A. Abraham, L. C. Jain, and R. Goldberg, Evolutionary multiobjective optimization : theoretical advances and applications. New York: Springer, 2005.
    [21] K. Deb, Multi-objective optimization using evolutionary algorithms, 1st ed. Chichester ; New York: John Wiley & Sons, 2001.
    [22] D. W. K. Ng, E. S. Lo, and R. Schober, "Multiobjective Resource Allocation for Secure Communication in Cognitive Radio Networks With Wireless Information and Power Transfer," IEEE Transactions on Vehicular Technology, vol. 65, pp. 3166-3184, May 2016.
    [23] R. Devarajan, S. C. Jha, U. Phuyal, and V. K. Bhargava, "Energy-Aware Resource Allocation for Cooperative Cellular Network Using Multi-Objective Optimization Approach," IEEE Transactions on Wireless Communications, vol. 11, pp. 1797-1807, May 2012.
    [24] X. X. Sun and D. H. K. Tsang, "Energy-Efficient Cooperative Sensing Scheduling for Multi-Band Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 12, pp. 4943-4955, Oct 2013.
    [25] L. Akter and B. Natarajan, "Modeling Fairness in Resource Allocation for Secondary Users in a Competitive Cognitive Radio Network," 2010 Wireless Telecommunications Symposium (Wts), 2010.
    [26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, Apr 2002.
    [27] A. Peiravi, H. R. Mashhadi, and S. H. Javadi, "An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm," International Journal of Communication Systems, vol. 26, pp. 114-126, Jan 2013.
    [28] B. Kouassi, L. Deneire, B. Zayen, R. Knopp, F. Kaltenberger, F. Negro, et al., "Design and Implementation of Spatial Interweave LTE-TDD Cognitive Radio Communication on an Experimental Platform," IEEE Wireless Communications, vol. 20, pp. 60-67, Apr 2013.
    [29] M. Y. Hong, R. Y. Sun, H. Baligh, and Z. Q. Luo, "Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogeneous Networks," IEEE Journal on Selected Areas in Communications, vol. 31, pp. 226-240, Feb 2013.
    [30] Q. J. Shi, M. Razaviyayn, Z. Q. Luo, and C. He, "An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel," IEEE Transactions on Signal Processing, vol. 59, pp. 4331-4340, Sep 2011.
    [31] Z. Zhang, K. C. Teh, and K. H. Li, "Semidefinite Relaxation Based Beamforming in Clustered Cooperative Multicell MISO Systems," 2013 IEEE International Conference on Communications (Icc), pp. 5635-5639, 2013.
    [32] Y. C. Huang, C. W. Tan, and B. D. Rao, "Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition," IEEE Transactions on Wireless Communications, vol. 12, pp. 2730-2742, Jun 2013.
    [33] I. Wajid, M. Pesavento, Y. C. Eldar, and D. Ciochina, "Robust Downlink Beamforming With Partial Channel State Information for Conventional and Cognitive Radio Networks," IEEE Transactions on Signal Processing, vol. 61, pp. 3656-3670, Jul 2013.
    [34] Y. Yang, G. Scutari, P. R. Song, and D. P. Palomar, "Robust MIMO Cognitive Radio Systems Under Interference Temperature Constraints," IEEE Journal on Selected Areas in Communications, vol. 31, pp. 2465-2482, Nov 2013.
    [35] E. A. Gharavol, Y. C. Liang, and K. Mouthaan, "Robust Downlink Beamforming in Multiuser MISO Cognitive Radio Networks With Imperfect Channel-State Information," IEEE Transactions on Vehicular Technology, vol. 59, pp. 2852-2860, 2010.
    [36] K. Miettinen, Nonlinear multiobjective optimization. Boston ; London: Kluwer Academic Publishers, 1999.
    [37] S. P. Boyd, Linear matrix inequalities in system and control theory. Philadelphia, Pa.: Society for Industrial and Applied Mathematics, 1994.
    [38] H. Q. Du and T. Ratnarajah, "Robust Utility Maximization and Admission Control for a MIMO Cognitive Radio Network," IEEE Transactions on Vehicular Technology, vol. 62, pp. 1707-1718, May 2013.
    [39] E. D. Andersen and K. D. Andersen, "The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm," in High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, Eds., ed Boston, MA: Springer US, 2000, pp. 197-232.
    [40] W. Y. Chiu, "Multiobjective controller design by solving a multiobjective matrix inequality problem," IET Control Theory & Applications, vol. 8, pp. 1656-1665, 2014.
    [41] A. Levitin, Introduction to the design & analysis of algorithms, 3rd ed. ed. Harlow: Pearson, 2012.
    [42] C. Shen, T. H. Chang, K. Y. Wang, Z. D. Qiu, and C. Y. Chi, "Distributed Robust Multicell Coordinated Beamforming With Imperfect CSI: An ADMM Approach," IEEE Transactions on Signal Processing, vol. 60, pp. 2988-3003, Jun 2012.

    QR CODE