簡易檢索 / 詳目顯示

研究生: 蔡宗翰
論文名稱: 參雜碳材於染料敏化太陽能電池之電解質影響其離子導電度及擴散行為之分析
Analysis of impact on ionic conductivity and diffusion ability of the electrolyte in dye-sensitized solar cells with doping carbon materials
指導教授: 陳福榮
蔡春鴻
口試委員: 謝建國
蘇清源
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 染料敏化太陽能電池膠態電解質奈米碳材高分子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在染料敏化太陽能電池(Dye-sensitized solar cells)的研究中,對於其特點因其在太陽能電池領域中,相較以往的太陽能電池,染敏電池擁有較低成本、製程相對簡單、且其選用材料對於環境的影響較小的優勢,對於日後再生能源的發展,是一具有潛力的選擇。而在染敏電池的發展中,雖然液態電解質的型式有較佳的光電轉換效率,但是其之漏液問題一直是眾多科學家欲解決之問題,故此發展出膠態與固態電解質來改善,因其具有揮發性較低的特性。但是因為其黏滯性較高,導致電解質中的離子傳遞速度降低,增加了電子傳導得難度,故其在光電量測中會得到較低的轉換效率,故在本實驗中,應用具有導電特性的碳材添加進入膠態電解質中,改善了膠態電解質效率低落的狀況。
    在此實驗中,將碳材添加進入不同有機溶劑製成的液態電解質中,利用交流阻抗儀(AC impedance)觀察碳材對於電解質的離子導電度的影響,以及循環伏安法測定電解質中的碘離子擴散能力因為添加碳材改變的分析,並且將之製成元件,做光電轉換效率量測,得到其之電流-電壓的特性量測分析(J-V curve)。研究結果顯示,在導入碳材後其電解質內部的阻抗降低、碘離子擴散有被其提升之效果,這也使得在效率量測中,其內部阻抗下降而得到較高之短路電流(Jsc),電池效率也升高,其是因為碘離子的擴散路徑藉由碳材添加而降低的緣故。在此之後將碳材導入膠態電解質中,同樣做離子導電度、離子擴散能力分析、以及電池的元件效率量測,並在實驗結果中得知,碳材能夠在膠態黏稠度較高的環境中導通電子進入電解質,離子導電度相對未添加碳材之電解質系統有增加之趨勢,另外這也讓相對未添加碳材的系統碘根離子與碘三根離子之間的交換速率得以提升,故量得碘離子擴散系數提高。封裝成電池元件的效率更得到趨近液態電解質的好表現,由此證明,本實驗對於提升染料敏化太陽能電池中膠態電解質的效率有所貢獻,提高其之實用性及未來發展性。


    Since the dye-sensitized solar cell (DSSC) was reported in 1991 by M. Gratzel ,it has aroused intense interest owing to its low cost, simple preparation procedure, and more environment-friendly compared with traditional photovoltaic devices. Therefore, DSSCs have been considered one of the promising alternatives to conventional solar cells. But the leakage of the liquid electrolyte is the major problem which blocks the application of the flexible device. To solve this problem, the quasi-solid and solid type electrolyte is discovered to replace the liquid one. However, their ion conductivity and ion diffusion ability are limited by the higher viscosity so the cell performance of this type is lower than liquid type.

    In this experiment, we added different ratio carbon materials (CM) into the organic solvent (MPN,NMP) as liquid type electrolyte by ultrasonic the CM in the electrolyte solution several hours. At first, we measured its ion conductivity by the AC impedance and then we use Cyclic voltammeter (CV) measurement to survey the influence of the diffusion ability changed by the CM added. The charge transfer resistance of Pt/electrolyte and Nernst diffusion in the electrolyte presents the catalytic ability of CE and diffusion ability of redox couple, and diffusion limited current is confirmed the triiode in electrolyte diffusion ability in different carbon materials ratio. We discovered that added CM can improve the ion conductivity and diffusion ability. Next, to identify the performance of cell, we measured the cell efficiency under illumination of AM1.5 (100mW/cm2). The conversion efficiency is also raised when we added the CM into the electrolyte. Because of that we infer adding carbon materials providing an extended electron transfer material facilitates electron transfer from counter electrode to tri-iodide ions to increase the exchange reaction of redox couple in the viscous electrolyte so that the performance of the cell also be improved.

    At last we induce the polymer material into the system to form quasi-solid type electrolyte. We added 10wt% Polyvinyl butyral (PVB) into the NMP system, and 20 wt % Polyethylene Glycol into the MPN system. The ionic conductivity and the diffusion ability are measured after the different CM ratio added. We discovered that the resistance of the quasi-solid electrolyte is lowered and the diffusion ability is also raised due to CM added. In the efficiency rest, the performance of the quasi-solid electrolyte with CM is about 88% of the liquid type one. It can approve the fact that the quasi-solid type solar cells can achieve the high efficiency by CM added into the system which supplies DSSC a opportunity to apply in the flexible device.

    摘要......................................................i Abstract.................................................ii 誌謝.....................................................iii 目錄......................................................iv 表目錄...................................................viii 圖目錄......................................................x 第一章 緒論.................................................1 1-1研究背景.................................................1 1-2太陽能電池介紹............................................1 1-2-1 簡介.................................................1 1-2-2 太陽能電池分類.........................................2 1-2-3 染料敏化太陽能電池發展...................................4 1-3研究動機與研究問題.........................................5 1-3-1 研究動機..............................................5 1-3-2 研究問題..............................................6 第二章 文獻回顧..............................................9 2-1 染料敏化太陽能電池........................................9 2-2 染料敏化太陽能電池工作原理.................................9 2-3 染料敏化太陽能電池構造....................................12 2-3-1工作電極..............................................12 2-3-2 染料................................................14 2-3-3 電解質..............................................16 A.液態電解質.........................................16 B.固態電解質.........................................18 C.膠態電解質.........................................18 2-3-4 參雜奈米粒子於電解質之研究..............................21 2-3-5 對電極............................................. 22 2-4 太陽能電池電流-電壓輸出特性...............................23 2-4-1 短路電流............................................23 2-4-2 開路電壓............................................24 2-4-3 填充因子............................................25 2-4-4 轉換效率............................................26 2-5 碳黑.................................................26 2-6 還原態氧化石墨烯.......................................27 第三章 實驗步驟與原理......................................36 3-1 實驗綱要.............................................36 3-2 實驗流程規劃..........................................36 3-3 實驗步驟.............................................37 3-3-1 清洗導電玻璃.........................................37 3-3-2 工作電極製備........................................37 3-3-3 電解質的製備........................................38 A.液態電解質的製備....................................38 B.膠態電解質的製備....................................38 C.參雜碳材於膠態電解質的製備............................39 3-3-4對電極的製備.........................................40 3-4 實驗流程.............................................41 3-5 儀器量測與分析原理.....................................42 3-5-1 分析儀器...........................................42 3-5-2 掃描式電子顯微鏡.....................................42 3-5-3 拉曼分析儀..........................................43 3-5-4 粒徑分析儀..........................................43 3-5-5 循環伏安法..........................................44 3-5-6 交流阻抗法..........................................45 3-5-7 太陽光模擬器........................................46 第四章 實驗結果與討論.......................................55 4-1碳材特性分析............................................55 4-1-1 碳材形貌分析.........................................55 4-1-2 碳材物性分析.........................................56 4-2 參雜碳材至液態電解質之電性分析............................57 4-2-1 離子導電度分析......................................57 A.NMP電解質參入碳材之離子導電度分析....................57 B.MPN電解質參入碳材之離子導電度分析....................58 4-2-2 離子擴散系數分析....................................60 A.NMP電解質參入碳材之離子擴散系數分析..................60 B.MPN電解質參入碳材之離子擴散系數分析..................61 4-3 碳材於電解質中之分散分析................................62 A.碳材於NMP電解質之分散分析...........................63 B.碳材於MPN電解質之分散分析...........................64 4-4 電池元件電性分析……………….................................65 4-4-1 NMP電解質參入碳黑之元件分析............................65 4-4-2 NMP電解質參入還原態氧化石墨烯之元件分析..................66 4-4-3 MPN電解質參入碳黑之元件分析............................67 4-4-4 MPN電解質參入還原態氧化石墨烯之元件分析...................68 4-5 參雜碳材至膠態電解質之電性分析.............................69 4-5-1離子導電度分析………………………................................69 A. NMP膠態電解質參入還原態氧化石墨烯之離子導電度分析..............69 B. MPN膠態電解質參入還原態氧化石墨烯之離子導電度分析..............70 4-5-2離子擴散系數分析.......................................70 A. NMP膠態電解質參入還原態氧化石墨烯之離子擴散系數分析.......70 B. MPN膠態電解質參入還原態氧化石墨烯之離子擴散系數分析........71 4-6 參雜碳材至膠態電解質之電池元件量測分析.......................72 4-6-1 NMP膠態電解質參入還原態氧化石墨烯之元件量測分析.............72 4-6-2 NMP膠態電解質參入還原態氧化石墨烯之元件量測分析.............73 第五章 結論...............................................98 第六章 參考文獻...........................................100

    [1]J. L. Sawin, "RenewableS 2013 GLOBAL STATUS REPORT," 2013.
    [2]K. E. Martin A. Green, Y. H. , and W. W. a. E. D. D. , "Solar cell efficiency tables (version 43)," PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, vol. 22, pp. 1-9, 2014.
    [3]G. A. V. Sivakov, A. Gawlik, A. Berger, J. Plentz, F. Falk, and a. S. H. Christiansen, "Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties,
    and Cell Parameters," Nano Letters, vol. 9, pp. 1549-1554, 2009.
    [4]R. B. Bergmann, "Crystalline Si thin-film solar cells: a review," Applied Physics A
    Materials Science & Processing, vol. 69, pp. 187-194, 1999.
    [5]A. K. M. K. Nazeeruddin, Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, "Conversion of Light to Electricity by cis-X2Bis( 2,2-bipyridyl-4,4-dicarboxylate)ruthenium Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes," JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 115, pp. 6382-6390, 1993.
    [6]M. A. Green, "Thin-film solar cells: review of materials, technologies and commercial status," Journal of Materials Science: Materials in Electronics, vol. 18, pp. 15-19, 2007.
    [7]D. W. a. D. Meissner, "Organic Solar Cells," Advanced Materials, vol. 3, pp. 129-138, 1991.
    [8]M. G. B. Oregan, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, 1991.
    [9]工業技術研究院, 「太陽電池及模板」,2012.
    [10]黃家華, 「CIGS 太陽能電池技術發展趨勢」,電子月刊, vol. 17, p. 138, 2008.
    [11]M. Gratzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," INORGANIC CHEMISTRY, vol. 44, pp. 6841-6851, 2005.
    [12]H.W. L. Aswani Yella, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran,Md.Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, vol. 334, pp. 629-634, 2011.
    [13]S. H. I. Jin Hyuck Heo, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, Md. K. Nazeeruddin,Michael Gra¨tzel and Sang Il Seok, "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature photonics, vol. 7, pp. 487-492, 2013.
    [14]D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura, "Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells," Advanced Functional Materials, vol. 16, pp. 1228-1234, 2006.
    [15]J. R. H. Durrant, Saif A., "Solar cells: A solid compromise," Nature Materials, vol. 2, pp. 362-363, 2003.
    [16]R. Jose, V. Thavasi, and S. Ramakrishna, "Metal Oxides for Dye-Sensitized Solar Cells," Journal of the American Ceramic Society, vol. 92, pp. 289-301, 2009.
    [17]M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [18]V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna, "Controlled electron injection and transport at materials interfaces in dye sensitized solar cells," Materials Science and Engineering: R: Reports, vol. 63, pp. 81-99, 2009.
    [19]簡國明、洪長春、吳典熹、王永銘、藍怡平, 「奈米二氧化鈦專利地圖及分析」, 行政院國家科學委員會, 2003.
    [20]K.M. Lee, V. Suryanarayanan, and K.C. Ho, "A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 91, pp. 1416-1420, 2007.
    [21]D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, and Z. Bian, "Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles," The Journal of Physical Chemistry C, vol. 112, pp. 8486-8494, 2008.
    [22]S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, et al., "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, vol. 516, pp. 4613-4619, 2008.
    [23]N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, "Dye-Sensitized TiO2 Solar Cells:  Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4," The Journal of Physical Chemistry B, vol. 103, pp. 3308-3314, 1999.
    [24]G.O. K. a. K.S. Ryu, "Dynamic Response of Charge Transfer and Recombination at Various Electrodes in Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrent and Photovoltage Spectroscopy," BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 33, pp. 469-472, 2012.
    [25]M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004.
    [26]K. Hara, H. Sugihara, L. P. Singh, A. Islam, R. Katoh, M. Yanagida, et al., "New Ru(II) phenanthroline complex photosensitizers having different number of carboxyl groups for dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 145, pp. 117-122, 2001.
    [27]P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, "A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells," Journal of the American Chemical Society, vol. 127, pp. 808-809, 2004.
    [28]Z.S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, "Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films," Langmuir, vol. 21, pp. 4272-4276, 2005.
    [29]M. K. Nazeeruddin and M. Grätzel, "Transition Metal Complexes for Photovoltaic and Light Emitting Applications," in Photofunctional Transition Metal Complexes. vol. 123, V. W. Yam, Ed., ed: Springer Berlin Heidelberg, pp. 113-175, 2007.
    [30]S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, et al., "High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness," Advanced Materials, vol. 18, pp. 1202-1205, 2006.
    [31]J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, et al., "Progress on the electrolytes for dye-sensitized solar cells," Pure and Applied Chemistry, vol. 80, pp. 2241-2258,2008
    [32]S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, "Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells," The Journal of Physical Chemistry B, vol. 101, pp. 2576-2582, 1997.
    [33]G. K. K Tennakone, IRM Kottegoda,KGUWijayantha and VPS Perera, "A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex," JOURNAL OF PHYSICS D-APPLIED PHYSICS, vol. 31, pp. 1492-1496, 1998.
    [34]B. O'Regan and D. T. Schwartz, "Efficient Photo-Hole Injection from Adsorbed Cyanine Dyes into Electrodeposited Copper(I) Thiocyanate Thin Films," Chemistry of Materials, vol. 7, pp. 1349-1354, 1995.
    [35]J. H. Park, K. J. Choi, S. W. Kang, Y. Seo, Y. S. Kang, J. Kim, et al., "Ionic diffusion in various electrolytes and the implications for dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, pp. 1-6, 2010.
    [36]P. Balraju, P. Suresh, M. Kumar, M. S. Roy, and G. D. Sharma, "Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye," Journal of Photochemistry and Photobiology A: Chemistry, vol. 206, pp. 53-63, 2009.
    [37]U. Bach, Y. Tachibana, J.E. Moser, S. A. Haque, J. R. Durrant, M. Grätzel, et al., "Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells," Journal of the American Chemical Society, vol. 121, pp. 7445-7446, 1999.
    [38]B. O. R. a. D. T. Schwartz, "Efficient dyesensitized charge separation in a widebandgap pn heterojunction," Journal of Applied Physics, vol. 80, pp. 4749-4754, 1996.
    [39]G. R. R. A. K. K Tennakone, A R Kumarasinghe, K G U Wijayantha and P M Sirimanne, "A dye-sensitized nano-porous I solid-state photovoltaic cell " SEMICONDUCTOR SCIENCE AND TECHNOLOGY, vol. 10, pp. 1689-1693, 1995.
    [40]W. Xiang, Y. Zhou, X. Yin, X. Zhou, S. Fang, and Y. Lin, "In situ quaterizable oligo-organophosphazene electrolyte with modified nanocomposite SiO2 for all-solid-state dye-sensitized solar cell," Electrochimica Acta, vol. 54, pp. 4186-4191, 2009.
    [41]J. Gong, K. Sumathy, and J. Liang, "Polymer electrolyte based on polyethylene glycol for quasi-solid state dye sensitized solar cells," Renewable Energy, vol. 39, pp. 419-423, 2012.
    [42]H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, "The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells," Materials Chemistry and Physics, vol. 110, pp. 38-42, 2008.
    [43]S. Xu, H. Hu, B. Sebo, B. Chen, Q. Tai, and X. Zhao, "Modification of nanocrystalline porous films by poly(ethyleneglycol) for quasi-solid dye-sensitized solar cells," Journal of Power Sources, vol. 196, pp. 10817-10821,2011.
    [44]D. Saikia, C. C. Han, and Y. W. Chen-Yang, "Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P(VdF-HFP)-based gel polymer electrolyte," Journal of Power Sources, vol. 185, pp. 570-576, 2008.
    [45]C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud, "Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts," Solid State Ionics, vol. 11, pp. 91-95, 1983.
    [46]T. Itoh, S. Horii, T. Uno, M. Kubo, and O. Yamamoto, "Influence of hyperbranched polymer structure on ionic conductivity in composite polymer electrolytes of PEO/hyperbranched polymer/BaTiO3/Li salt system," Electrochimica Acta, vol. 50, pp. 271-274, 2004.
    [47]C. H. Park, D. W. Kim, J. Prakash, and Y.K. Sun, "Electrochemical stability and conductivity enhancement of composite polymer electrolytes," Solid State Ionics, vol. 159, pp. 111-119, 2003.
    [48]K. Edelmann and B. Sandner, "Star-shaped oligo(ethylene glycol) ethers (OEGE) as a new type of plasticizer for polymer gel electrolytes," Solid State Ionics, vol. 170, pp. 225-232, 2004.
    [49]Y. A. N. Papageorgiou, M. Armand,P. Bonhote, H. Pettersson, A. Azam, and M. Gratrel, "The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications," Journal of The Electrochemical Society, vol. 143, pp. 3099-3108, 1996.
    [50]P. Wang, S. M. Zakeeruddin, J.E. Moser, R. Humphry-Baker, and M. Grätzel, "A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells," Journal of the American Chemical Society, vol. 126, pp. 7164-7165, 2004.
    [51]C.P. Lee, P.Y. Chen, R. Vittal, and K.C. Ho, "Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black," Journal of Materials Chemistry, vol. 20, pp. 2356-2361, 2010.
    [52]B.X. Lei, W.J. Fang, Y.F. Hou, J.Y. Liao, D.B. Kuang, and C.Y. Su, "All-solid-state electrolytes consisting of ionic liquid and carbon black for efficient dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 216, pp. 8-14, 2010.
    [53]L. J. Brennan, S. T. Barwich, A. Satti, A. Faure, and Y. K. Gun'ko, "Graphene-ionic liquid electrolytes for dye sensitised solar cells," Journal of Materials Chemistry A, vol. 1, pp. 8379-8384, 2013.
    [54]J. E. Benedetti, A. A. Corrêa, M. Carmello, L. C. P. Almeida, A. S. Gonçalves, and A. F. Nogueira, "Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells," Journal of Power Sources, vol. 208, pp. 263-270, 2012.
    [55]A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert, "Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations," The Journal of Physical Chemistry B, vol. 107, pp. 6022-6025, 2003.
    [56]M.H. Yeh , L.Y. Lin , J.S. Su, Y.A. Leu, R. Vittal, C.L. Sun, et al., "Nanocomposite Graphene/Pt Electrocatalyst as Economical Counter Electrode for Dye-Sensitized Solar Cells," ChemElectroChem, vol. 1, pp. 416-425, 2014.
    [57]S.Y. Tai, C.J. Liu, S.W. Chou, F. S.S. Chien, J.Y. Lin, and T.W. Lin, "Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, pp. 24753-24759, 2012.
    [58]G. Yue, J.Y. Lin, S.-Y. Tai, Y. Xiao, and J. Wu, "A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells," Electrochimica Acta, vol. 85, pp. 162-168, 2012.
    [59]J. Wu, Z. Lan, J. Lin, M. Huang, and P. Li, "Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells," Journal of Power Sources, vol. 173, pp. 585-591, 2007.
    [60]A. Hagfeldt and M. Grätzel, "Molecular Photovoltaics," Accounts of Chemical Research, vol. 33, pp. 269-277, 2000.
    [61]謝立生, 「碳黑物性與應用入門」, 高分子工業, pp. 51-58, 1988.
    [62]M. Liu, "Coating Technology of Nuclear Fuel Kernels: A Multiscale View," 2013.
    [63]A. J. Romero.E, "SPECIAL CARBON-BLACKS FOR PLASTICS," Plastic Engineering, vol. 51, pp. 29-32, 1995.
    [64]O. C. Compton and S. T. Nguyen, "Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials," Small, vol. 6, pp. 711-723, 2010.
    [65]T. Nakajima and Y. Matsuo, "Formation process and structure of graphite oxide," Carbon, vol. 32, pp. 469-475, 1994.
    [66]W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
    [67]J. Ito, J. Nakamura, and A. Natori, "Semiconducting nature of the oxygen-adsorbed graphene sheet," Journal of Applied Physics, vol. 103, pp. 113712-1-113712-5, 2008.
    [68]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
    [69]H.M. Ju, S. H. Huh, S.H. Choi, and H.L. Lee, "Structures of thermally and chemically reduced graphene," Materials Letters, vol. 64, pp. 357-360, 2010.
    [70]X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, et al., "UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)," Chemical Engineering Journal, vol. 183, pp. 238-243, 2012.
    [71]P. Zhu, M. Shen, S. Xiao, and D. Zhang, "Experimental study on the reducibility of graphene oxide by hydrazine hydrate," Physica B: Condensed Matter, vol. 406, pp. 498-502, 2011.
    [72]M. Pumera, "Electrochemistry of graphene, graphene oxide and other graphenoids: Review," Electrochemistry Communications, vol. 36, pp. 14-18, 2013.
    [73]曾友利, 「奈米複合電極觸媒材料的製備與鑑定」, 國立清華大學化學系碩士論文, 2009.
    [74]A. Hilger, "Electrical Impedance Tomography," 1990.
    [75]H. S. Chen, S. J. Lue, Y. L. Tung, K. W. Cheng, F. Y. Huang, and K. C. Ho, "Elucidation of electrochemical properties of electrolyte-impregnated micro-porous ceramic films as framework supports in dye-sensitized solar cells," Journal of Power Sources, vol. 196, pp. 4162-4172, 2011.
    [76]A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 46, pp. 3457-3466, 2001.
    [77]施仁親, 「太陽光模擬器要求與新型LED太陽光模擬器簡介」, 光連雙月刊, vol. 92, 2011.
    [78]"Introduction to Solar Radiation," Newport Experience.
    [79]X. Miao, K. Pan, Q. Pan, W. Zhou, L. Wang, Y. Liao, et al., "Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells," Electrochimica Acta, vol. 96, pp. 155-163, 2013.
    [80]A. Fukui, R. Komiya, R. Yamanaka, A. Islam, and L. Han, "Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell," Solar Energy Materials and Solar Cells, vol. 90, pp. 649-658, 2006.
    [81]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, pp. 6595-6663, 2010.
    [82]J. Wu, Z. Lan, J. Lin, M. Huang, S. Hao, and L. Fang, "Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells," Electrochimica Acta, vol. 52, pp. 7128-7135, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE