簡易檢索 / 詳目顯示

研究生: 徐暐怜
Hsu, Wei-Ling
論文名稱: 3-胺基苯基膦酸聚合物製備及其特性分析
Synthesis and Characterization of Polymerized (3-Aminophenyl)phosphonic Acid
指導教授: 王本誠
Wang, Pen-Cheng
口試委員: 王翔郁
Wang, Hsiang-Yu
吳劍侯
Wu, Chien-Hou
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 共軛高分子聚膦酸苯胺極化子離域質子轉導自旋電子
外文關鍵詞: phosphonic, spins
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前常見的自摻雜聚苯胺有磺酸根、硼酸根及羧酸根等,膦酸根卻少有人研究,而膦酸作為自摻雜聚苯胺的質子酸部份,不僅擁有足夠的酸度,同時是一個二元酸根,第一酸根用於內部摻雜,而未用於摻雜的第二酸根能夠用來提供特徵,過去己有研究團隊發表了以自帶膦酸根的聚苯胺研究報告,他們所使用的材料在後續分析中,表現出了良好的熱穩定性、高透明性,並且有極化子離域現象及自摻雜的效應,但目前尚未有完善的研究成果,仍在期待未來的性質改善及發展可用性。
    故本研究中嘗試使用自帶膦酸根之苯胺—3-胺基苯基膦酸作為實驗單體,利用各種實驗參數將單體以化學氧化法聚合,並對其表面形態、分子結構、氧化/還原程度及質子化程度作分析探討,透過紫外光-可見光光譜及傅里葉轉換紅外光光譜可證明聚3-胺基苯基膦酸具有相似聚苯胺的高分子主鏈,而透過起始劑的摻雜,使聚合物在微結構上形成多孔形態,對於應用於質子交換材料,提高孔隙率可有效的增加表面積及傳導路徑。此外,摻雜起始劑可有效的增加聚合物的極化子離域及質子化程度,與未摻雜起始劑的結果相比,質子化程度從20.26-37.64(%)提升至44.04-72.37 (%)(氧化劑-過硫酸銨APS);12.34-14.43(%)提升至14.05-19.35(%)(氧化劑-過硫酸鉀K2S2O8);1.60-16.02(%)提升至10.57-30.26(%)(氧化劑-過氧化氫H2O2)。透過氧化劑旳選擇可控制聚合物的氧化/還原程度,當使用過硫酸鉀K2S2O8作為氧化劑時,其平均氧化/還原程度約1.54具有相對高的氧化程度,而過氧化氫H2O2約0.61具有較高的還原程度,不過無論使用何種氧化劑,產物皆具有結合能約401eV的-N+-質子化結構;最後,在實驗中發現聚3-胺基苯基膦酸具有自旋電子離域的特性,當使用對苯二胺AP作為起始劑時,A/B ratio趨近於1具有最佳的電子自旋對稱性,並且有高度的電子離域現象。由於化學結構中酸根官能基對聚苯胺主鏈的相互作用使得聚合物不導電,以目前的實驗結果,聚3-胺基苯基膦酸為不導電之多孔材料,而透過文獻可知膦酸官能基可用作提供質子及承接質子,因此具有質子傳導性,故聚3-胺基苯基膦酸可望成為質子交換材料或有機自旋電子材料。


    At present, the self-doped polyaniline bear sulfonic, boronic and carboxylic groups, but bearing phosphonic group is rare in the study. The phosphonic acid functional group as the protonic acid radical of the self-doped polyanilines, it does not only show enough acidity for doping but also is a dibasic acid. The first acid radical is used to internal-doping in the polyaniline backbone, and the second acid radical would provide features, such as forming salt while keeping the doping state. In 2014, the Japanese study teams reported the studies of the self-doped polyaniline bearing phosphonic acid. The materials they used in the subsequent analysis showed good thermal stability, high transparency, polaron delocalization and self-doped effects. But there are not perfect studies in bearing phosphonic acid polyaniline area, therefore, there is still looking forward to improving performance and developing usability in the future.
    In this study, we try to use bearing phosphonic acid aniline (3-aminophenyl phosphonic acid) as the monomer and use the chemical oxidative polymerization with the various experimental parameters. Then, analyze the surface morphology, molecular structure, redox level and protonation level. Proved via UV-visible spectra and FTIR spectra, poly(3-aminophenyl) phosphonic acid similar to polyaniline backbone. The polymers can form the porous structure in the morphology by adding the initiator. For the proton exchange materials, increasing the surface area can effectively increase the proton transfer pathways. In addition, adding the initiator increase the degree of spins delocalization and protonation level effectively. The degree of protonation level increased from 20.26-37.64 (%) to 44.04-72.37 (%) (The oxidant is APS), 12.34-14.43 (%) increased to 14.05-19.35 (%) (The oxidant is K2S2O8) and 1.60-16.02 (%) increased to 10.57-30.26 (%) (The oxidant is H2O2). The redox level of the poly(3-aminophenyl phosphonic acid) can be controlled by the choice of oxidant. When using K2S2O8 as the oxidant, the average redox level is about 1.54, that is a relatively high level of oxidation. Whereas H2O2 is about 0.61, that is a high level of reduction. However, regardless of which oxidant is used, the polymers all have -N+- protonated structures, the binding energy ~401eV. Finally, the experiment progress found that poly3-aminophenyl phosphonic acid has spins delocalization effect. When using AP as the initiator, the A/B ratio tends to 1 have an optimum spin symmetry and a high degree of electron delocalization. Poly(3-aminophenyl phosphonic acid) is non-conductive, due to the acid group of the chemical structure has an interaction with the polyaniline backbone. Based on the current experimental results, poly(3-aminophenyl phosphonic acid) is a porous material that does not have electron conductivity. It can be known from the literatures that the phosphonic acid functional group can serve as the proton-donating and proton-accepting, so the polymer is proton conductivity. Therefore, it is expected to become a proton exchange material or an organic spintronic material.

    摘要 i Abstract iii 致謝 v 目錄 vi 表目錄 ix 圖目錄 xi 一、緒論 1 1-1 前言 1 1-2 實驗目的 3 二、文獻回顧 5 2-1 共軛高分子 5 2-1-1 導電機制 6 2-1-2 聚苯胺 (Polyaniline) 7 2-1-2-1 聚苯胺的氧化還原模式 8 2-1-2-2 聚苯胺之合成法 9 2-1-3 自摻雜聚苯胺 9 2-1-3-1 膦酸基質摻雜 10 2-2 未來應用 13 2-2-1 質子交換膜燃料電池 (Proton exchange membrane fuel cell, PEMFC) 13 2-2-2 電致變色材料 (Electrochromic materials) 15 2-2-3 生物感測器 (Biosensors) 17 2-3 自旋電子學 20 2-3-1 聚苯胺的自旋電子(極化子)轉換型態 21 2-3-2 自摻雜聚苯胺的自旋電子(極化子)轉換型態 21 三、實驗內容 23 3-1 實驗藥品與設備 23 3-1-1 實驗藥品與器材 23 3-1-2 實驗設備 24 3-1-2-1 紫外光-可見光-近紅外光分光光譜儀(Ultraviolet-Visible-Near-infrared Light Spectrometer) 24 3-1-2-2 傅里葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 25 3-1-2-3 場發射式電子掃描顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 26 3-1-2-4 四點探針(Four Point Probe) 27 3-1-2-5 高磁場核磁共振儀(Nuclear Magnetic Resonance Spectrometer, NMR) 28 3-1-2-6 高解析X射線電子能譜儀(High Resolution X-ray Photoelectron Spectrometer, XPS) 29 3-1-2-7共軛聚焦顯微拉曼光譜儀(Confocal Micro-Raman Spectroscopy) 31 3-1-2-8電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectrometer, EPR) 32 3-1-2-9 聚焦式微波反應儀(Single Mode Focused CEM reactor) 33 3-2實驗步驟 35 3-2-1 化學氧化法製備(3-Aminophenyl)phosphonic acid聚合物 35 3-2-2 實驗代號命名 38 四、實驗結果與討論 39 4-1 化學氧化法製備(3-Aminophenyl)phosphonic acid之聚合物 39 4-1-1 表面形態分析 39 4-1-2 分子鍵結分析 43 4-1-2-1紫外光-可見光-近紅外分光光譜 43 4-1-2-2 傅里葉轉換紅外光譜(FTIR) 51 4-1-2-3 X射線光電子能譜(XPS) 53 4-1-2-4 共軛聚焦顯微拉曼光譜(Raman) 65 4-1-3 電性分析 68 4-1-3-1 電子順磁共振光譜(EPR) 68 4-1-3-2 片電阻量測 72 五、結論 74 參考文獻 76 附錄A X射線光電子能譜結構分峰圖 80

    [1] Y. Abe, T. Amaya, Y. Inada, and T. Hirao, "Characterization of self-doped conducting polyanilines bearing phosphonic acid and phosphonic acid monoester," Synthetic Metals, vol. 197, pp. 240-245, 2014.
    [2] T. Amaya, Y. Abe, Y. Inada, and T. Hirao, "Synthesis of self-doped conducting polyaniline bearing phosphonic acid," Tetrahedron Letters, vol. 55, pp. 3976-3978, 2014.
    [3] T. Amaya, Y. Abe, Y. Inada, and T. Hirao, "Synthesis of self-doped conducting polyaniline bearing phosphonic acid monoester," Synthetic Metals, vol. 195, pp. 137-140, 2014.
    [4] T. Amaya, Y. Abe, H. Yamamoto, T. Kozawa, and T. Hirao, "Conductivity of poly (2-methoxyaniline-5-phosphonic acid)/amine complex and its charge dissipation property in electron beam lithography," Synthetic Metals, vol. 198, pp. 88-92, 2014.
    [5] T. Amaya, Y. Abe, and T. Hirao, "Deprotonation-Induced Efficient Delocalization of Polaron in Self-Doped Poly (anilinephosphonic acid)," Macromolecules, vol. 47, pp. 8115-8118, 2014.
    [6] T. Amaya, R. Sugihara, D. Hata, and T. Hirao, "Self-doped polyaniline derived from poly (2-methoxyaniline-5-phosphonic acid) and didodecyldimethylammonium salt," RSC Advances, vol. 6, pp. 22447-22452, 2016.
    [7] E. Antolini, "Carbon supports for low-temperature fuel cell catalysts," Applied Catalysis B: Environmental, vol. 88, pp. 1-24, 2009.
    [8] A. G. MacDiarmid, "Synthetic metals: a novel role for organic polymers," Synthetic metals, vol. 125, pp. 11-22, 2001.
    [9] D. N. Nguyen and H. Yoon, "Recent advances in nanostructured conducting polymers: from synthesis to practical applications," Polymers, vol. 8, p. 118, 2016.
    [10] A. Moliton and R. C. Hiorns, "Review of electronic and optical properties of semiconducting π‐conjugated polymers: applications in optoelectronics," Polymer International, vol. 53, pp. 1397-1412, 2004.
    [11] M. Costolo and A. Heeger, "Anisotropic conductivity in polyaniline and image processing applications," Synthetic Metals, vol. 114, pp. 85-90, 2000.
    [12] A. Malinauskas, "Self-doped polyanilines," Journal of Power Sources, vol. 126, pp. 214-220, 2004.
    [13] E. C. Venancio, P.-C. Wang, and A. MacDiarmid, "The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline," Synthetic Metals, vol. 156, pp. 357-369, 2006.
    [14] P.-C. Wang, Y. Dan, and L.-H. Liu, "Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped polyaniline nanofibers," Materials Chemistry and Physics, vol. 144, pp. 155-161, 2014.
    [15] A. F. Diaz and J. A. Logan, "Electroactive polyaniline films," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 111, pp. 111-114, 1980.
    [16] W.-S. Huang, B. D. Humphrey, and A. G. MacDiarmid, "Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes," Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 82, pp. 2385-2400, 1986.
    [17] Z. D. Zujovic, Y. Wang, G. A. Bowmaker, and R. B. Kaner, "Structure of ultralong polyaniline nanofibers using initiators," Macromolecules, vol. 44, pp. 2735-2742, 2011.
    [18] H. D. Tran, Y. Wang, J. M. D’Arcy, and R. B. Kaner, "Toward an understanding of the formation of conducting polymer nanofibers," ACS nano, vol. 2, pp. 1841-1848, 2008.
    [19] C. Zhang, G. Li, and H. Peng, "Large-scale synthesis of self-doped polyaniline nanofibers," Materials Letters, vol. 63, pp. 592-594, 2009.
    [20] I. Honma and M. Yamada, "Bio-inspired membranes for advanced polymer electrolyte fuel cells. Anhydrous proton-conducting membrane via molecular self-assembly," Bulletin of the Chemical Society of Japan, vol. 80, pp. 2110-2123, 2007.
    [21] E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives," Progress in Polymer Science, vol. 57, pp. 103-152, 2016.
    [22] 韩帅元, 岳宝华, and 严六明, 「基于膦酸基的高温质子交换膜的研究进展」,物理化学学报, vol. 30, pp. 8-21, 2014.
    [23] R. K. Pachauri and Y. K. Chauhan, "A study, analysis and power management schemes for fuel cells," Renewable and sustainable energy reviews, vol. 43, pp. 1301-1319, 2015.
    [24] 吳千舜 and 諸柏仁, "燃料電池質子交換膜的最新發展," Chemistry, The chinese chem. SOC., Taipei, vol. 62, pp. 123-138, 2004.
    [25] B. C. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 2001.
    [26] W. T. Neo, Q. Ye, S.-J. Chua, and J. Xu, "Conjugated polymer-based electrochromics: materials, device fabrication and application prospects," Journal of Materials Chemistry C, vol. 4, pp. 7364-7376, 2016.
    [27] C. Dhand, M. Das, M. Datta, and B. Malhotra, "Recent advances in polyaniline based biosensors," Biosensors and Bioelectronics, vol. 26, pp. 2811-2821, 2011.
    [28] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, et al., "Spintronics: a spin-based electronics vision for the future," Science, vol. 294, pp. 1488-1495, 2001.
    [29] S. Stafström, J. Bredas, A. Epstein, H. Woo, D. Tanner, W. Huang, et al., "Polaron lattice in highly conducting polyaniline: theoretical and optical studies," Physical Review Letters, vol. 59, p. 1464, 1987.
    [30] C. H. Silva, A. M. D. C. Ferreira, V. R. Constantino, and M. L. Temperini, "Hybrid materials of polyaniline and acidic hexaniobate nanoscrolls: high polaron formation and improved thermal properties," Journal of Materials Chemistry A, vol. 2, pp. 8205-8214, 2014.
    [31] M. Jaymand, "Recent progress in chemical modification of polyaniline," Progress in Polymer Science, vol. 38, pp. 1287-1306, 2013.
    [32] J. Yue and A. Epstein, "XPS study of self-doped conducting polyaniline and parent systems," Macromolecules, vol. 24, pp. 4441-4445, 1991.
    [33] G. Li, C. Zhang, Y. Li, H. Peng, and K. Chen, "Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers," Polymer, vol. 51, pp. 1934-1939, 2010.
    [34] E. C. Venancio, P.-C. Wang, and A. G. MacDiarmid, "The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline," Synthetic Metals, vol. 156, pp. 357-369, 3/1/ 2006.
    [35] 張立信, 表面化學分析技術, 19卷4期, 國家奈米元件實驗室奈米通訊, pp.17-23, 2012
    [36] M. R. Gizdavic-Nikolaidis, M. Jevremovic, D. R. Stanisavljev, and Z. D. Zujovic, "Enhanced microwave synthesis: Fine-tuning of polyaniline polymerization," The journal of physical chemistry C, vol. 116, pp. 3235-3241, 2012.
    [37] C. O. Kappe, "Controlled microwave heating in modern organic synthesis," Angewandte Chemie International Edition, vol. 43, pp. 6250-6284, 2004.
    [38] P.-C. Wang, E. C. Venancio, D. M. Sarno, and A. G. MacDiarmid, "Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media," Reactive and functional polymers, vol. 69, pp. 217-223, 2009.
    [39] X.-S. Du, C.-F. Zhou, and Y.-W. Mai, "Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds," The Journal of Physical Chemistry C, vol. 112, pp. 19836-19840, 2008.
    [40] J. Stejskal, P. Kratochvil, and N. Radhakrishnan, "Polyaniline dispersions 2. UV—Vis absorption spectra," Synthetic Metals, vol. 61, pp. 225-231, 1993.
    [41] B. Guo, Y. Zhao, W. Wu, H. Meng, H. Zou, J. Chen, et al., "Research on the preparation technology of polyaniline nanofiber based on high gravity chemical oxidative polymerization," Chemical Engineering and Processing: Process Intensification, vol. 70, pp. 1-8, 2013.
    [42] J. E. Albuquerque, L. H. C. Mattoso, D. T. Balogh, R. M. Faria, J. G. Masters, and A. G. MacDiarmid, "A simple method to estimate the oxidation state of polyanilines," Synthetic Metals, vol. 113, pp. 19-22, 2000/06/15/ 2000.
    [43] S. E. Koh, K. D. McDonald, D. H. Holt, C. S. Dulcey, J. A. Chaney, and P. E. Pehrsson, "Phenylphosphonic acid functionalization of indium tin oxide: surface chemistry and work functions," Langmuir, vol. 22, pp. 6249-6255, 2006.
    [44] D. Peppard, J. Ferraro, and G. Mason, "Hydrogen bonding in organophosphoric acids," Journal of Inorganic and Nuclear Chemistry, vol. 7, pp. 231-244, 1958.
    [45] D. Peppard and J. Ferraro, "The preparation and infra-red absorption spectra of several complexes of bis-(2-ethylhexyl)-phosphoric acid," Journal of Inorganic and Nuclear Chemistry, vol. 10, pp. 275-288, 1959.
    [46] F. Hacıvelioğlu, N. Kılıç, E. B. Çelebi, and S. Yeşilot, "In situ preparation and properties of sulfonic and phosphonic acid substituted polyphosphazene/polyaniline composites," Polymer, vol. 96, pp. 112-120, 2016.
    [47] S. Golczak, A. Kanciurzewska, M. Fahlman, K. Langer, and J. J. Langer, "Comparative XPS surface study of polyaniline thin films," Solid State Ionics, vol. 179, pp. 2234-2239, 2008.
    [48] J. A. Colón Santana, "Charging effects in x-ray photoelectron spectroscopy, in Quantitative Core Level Photoelectron Spectroscopy, ed: Morgan & Claypool Publishers, 2015, pp. 4-1-4-11.
    [49] L. Dennany, P. C. Innis, F. Masdarolomoor, and G. G. Wallace, "ESR, Raman, and Conductivity Studies on Fractionated Poly (2-methoxyaniline-5-sulfonic acid)," The Journal of Physical Chemistry B, vol. 114, pp. 2337-2341, 2010.
    [50] M. Trchová, Z. Morávková, M. Bláha, and J. Stejskal, "Raman spectroscopy of polyaniline and oligoaniline thin films," Electrochimica Acta, vol. 122, pp. 28-38, 2014.
    [51] M. C. Bernard and A. Hugot-Le Goff, "Quantitative characterization of polyaniline films using Raman spectroscopy: I: Polaron lattice and bipolaron," Electrochimica Acta, vol. 52, pp. 595-603, 2006/10/25/ 2006.
    [52] J. Travers and M. Nechtschein, "Water effects in polyaniline: a new conduction process," Synthetic Metals, vol. 21, pp. 135-141, 1987.
    [53] P.-C. Wang and J.-Y. Yu, "Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization," Reactive and Functional Polymers, vol. 72, pp. 311-316, 2012.

    QR CODE