簡易檢索 / 詳目顯示

研究生: 廖柏瑞
Po-Jui Liao
論文名稱: 濺鍍製程參數對Bi/Te複合熱電薄膜影響之研究
A study of sputtering parameter effect on Bi/Te composite thermoelectric thin films
指導教授: 廖建能
Chien-Neng Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 熱電
外文關鍵詞: Bi, Te, thermoelectric
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積體電路微小化,元件運作時所產生的熱量遽增。快速上昇的運作溫度對於元件的可靠度及效能將產生莫大的威脅。而薄膜型熱電冷凍元件具有高冷卻功率(~數百W㎝-2)、降溫的反應時間迅速(~μs)、性能穩定且能夠與半導體製程匹配等優點,因此薄膜型熱電冷凍元件遂成為積體電路散熱的解決方案之一。而熱電元件的效能跟熱電材料的熱電優值(ZT)息息相關,Bi2Te3化合物是目前室溫下最佳之熱電材料。因此本論文利用直流濺鍍法製備Bi2Te3層狀薄膜,將Bi/Te 雙層複合薄膜依序鍍在長有氧化層之矽基材上。並利用後續熱時效處理,藉由固態擴散反應生成Bi-Te 化合物薄膜。探討不同Bi/Te厚度比對於整體薄膜熱電性質的影響。而本研究所採用主要的基板製程溫度為室溫,以得到較佳之薄膜平整度與附著特性,便於日後電子元件的整合。並且為了提升其熱電性質,引入了Bi薄膜退火製程,探討退火溫度與退火時間對於整體熱電薄膜微結構和熱電性質的影響。實驗發現,室溫製程的複合熱電薄膜平整度較佳,但是由於缺陷多,造成熱電性質不佳。因此利用Bi單層薄膜退火製程,減少了Bi薄膜的缺陷,並且在200℃/2hr退火後,可使Bi薄膜的Seebeck值達到-78μV/K。而經由不同Bi/Te薄膜厚度比的複合熱電薄膜實驗結果推測,隨著Bi2Te3化合物的生成,阻礙了後續Bi和Te原子的擴散,使得殘留的Bi薄膜影響整體複合薄膜的熱電性質。


    With continuous miniaturization of very large-scale integrated circuits (VLSI), devices generate substantial heat during operation. A rapid increase in operating temperature causes serious reliability concerns and impacts on devices performance. Thin-film thermoelectric cooling devices own the advantages of large cooling power density、fast response time、stability and compatibility with semiconductor process technology. Thus, it becomes one possible solution to VLSI heat dissipation problem. The performance of the thermoelectric device depends closely on the figure of merit of the material. Bi2Te3 compound is known the best thermoelectric material at room temperature presently. In this study, Bi2Te3 layered compound was prepared by DC sputter deposition method. The Bi/Te bilayer thin films were first deposited on SiO2 substrate in sequence, and transformed into Bi-Te compound by thermal treatment through solid state reaction. The effect of Bi/Te thickness ratio on the thermoelectric properties of the Bi-Te composite thin films was investigated. In order to obtain the better planarization and adhesion for thin film integration considerations, the substrate temperature is maintained at room temperature. A Bi thin film annealing process was introduced to improve the thermoelectric properties of Bi-Te composite thin film. The effect of thermal annealing conditions on the microstructure and the thermoelectric properties of Bi-Te composite thin film was also investigated. It is observed that Bi-Te composite thin film has good planarization and poor thermoelectric properties caused likely by imperfect crystalline microstructure when the substrate temperature during deposition is room temperature. Therefore, we introduced an post-annealing step to reduce defects in Bi thin film, which shows a Seebeck coefficient of -78μV/K after 200℃/2hr annealing. According to the results for Bi/Te composite films with different Bi/Te thickness ratio, we speculated that the formation of Bi2Te3 composite retarded further interdiffusion between Bi and Te. Therefore, the residual Bi thin film affected the thermoelectric characteristic of Bi/Te composite thin film.

    目錄 頁數 第一章、 緒論 ………………………………………………………………… 01 1.1 研究動機 ………………………………………………………………… 01 1.2 實驗目的 ………………………………………………………………… 02 1.3 熱電冷凍原理 …………………………………………………………… 02 1.3.1 Seebeck效應 …………………………………………………….. 02 1.3.2 Peltier 效應 ………………………………………………………. 03 1.3.3 熱電冷凍 …………………………………………………………. 04 第二章、文獻回顧 ……………………………………………………………… 06 第三章、實驗方法與分析 ……………………………………………………… 09 3.1 實驗流程 ………………………………………………………………… 09 3.2 試片製備及儀器設備 ……………………………………………………. 10 3.3 Seebeck係數量測方法 …………………………………………………… 13 3.4 電阻係數量測方法 ……………………………………………………….. 14 第四章、實驗結果與討論 ……………………………………………………… 16 4.1 基板溫度對熱電複合薄膜特性的影響 ………………………………… 16 4.2 Bi薄膜退火製程對熱電複合薄膜微結構與熱電性質的影響 ………… 20 4.3 壓力、退火溫度對Bi、Te單層薄膜的影響 …………………………… 23 4.4 不同Bi/Te 厚度比之熱電複合薄膜特性 ………………………………. 37 第五章、結論 …………………………………………………………………… 56 參考文獻 ………………………………………………………………………… 57 圖目錄 頁數 圖1-1、熱電材料的選擇依其運作溫度之分類 ……………………………… 02 圖1-2、Seebeck效應示意圖 …………………………………………………... 03 圖1-3、Peltier 效應示意圖 ……………………………………………………. 03 圖3-1、實驗流程圖 …………………………………………………………….. 09 圖3-2、濺鍍機全景 …………………………………………………………….. 11 圖3-3、濺鍍機腔體 …………………………………………………………….. 12 圖3-4、Seebeck係數量測系統 …………………………………………………. 14 圖3-5、Van der pauw 四點量測法 ……………………………………………. 15 圖4-1、試片一(基板溫度25 oC)之SEM圖 ……………………………….. 17 圖4-2、試片二(基板溫度≧150 oC)之SEM圖 ……………………………… 19 圖4-3、試片一和試片二之未退火SEM圖 …………………………………….. 22 圖4-4、不同製程壓力的Bi薄膜(x80000上視圖) ……………………….. 25 圖4-5、不同製程壓力的Bi薄膜(x2000 上視圖) ………………………… 26 圖4-6、不同製程壓力的Bi薄膜(剖面圖) ………………………………… 27 圖4-7、 5mtorr下不同溫度退火之Bi薄膜SEM圖(上視圖) ……………… . 31 圖4-8、5mtorr下不同溫度退火之Bi薄膜SEM圖(剖面圖) …………….. 32 圖4-9、不同製程壓力之Bi薄膜XRD分析圖 ……………………………….. 33 圖4-10、 5mtorr下不同溫度退火之Bi薄膜XRD圖 ………………………….. 33 圖4-11、5mtorr下不同溫度退火之Te薄膜SEM圖(上視圖)……………… 35 圖4-12、5mtorr下不同溫度退火之Te薄膜SEM圖(剖面圖) …………….. 36 圖4-13、Bi-Te相圖 ……………………………………………………………… 38 圖4-14、RBS能譜示意圖 ………………………………………………………. 41 圖4-15、Sample 1~4未退火條件之RBS能譜圖 …………………………….. 42 圖4-16、不同極性的Bi2Te35之Seebeck值 ………………………………….. 43 圖4-17、未退火複合薄膜SEM上視圖 ………………………………………… 45 圖4-18、未退火複合薄膜SEM剖面圖 ……………………………………….. 46 圖4-19、退火200 oC/12hr複合薄膜SEM剖面圖 ……………………………. 47 圖4-20、複合薄膜未退火、退火200 oC/12hr XRD分析圖 …………………. 48 圖4-21、Seebeck電壓並聯示意圖 ……………………………………………. 53 圖4-22、複合薄膜Seebeck值模擬圖 …………………………………………. 54 表目錄 頁數 表3-1、濺鍍機規格 ………………………………………………………….. 12 表4-1、兩試片之製程參數 ………………………………………………….. 16 表4-2、試片一(基板溫度25 oC)之熱電性質 ……………………………. 18 表4-3、試片二(基板溫度≧150 oC)之熱電性質 …………………………. 19 表4-4、Bi退火製程對Te膜厚度之影響 ……………………………………. 20 表4-5、試片一、二之熱電性質比較 ………………………………………… 23 表4-6、不同壓力下的Bi薄膜之熱電性質 ………………………………….. 24 表4-7、不同溫度退火的Bi薄膜之熱電性質 ……………………………….. 30 表4-8、不同溫度退火的Te薄膜之熱電性質 ……………………………….. 36 表4-9、熱電複合薄膜製程參數 ………………………………………………. 37 表4-10、熱電複合薄膜試片條件 ……………………………………………… 39 表4-11、熱電複合薄膜之原子百分比分析 ……………………………………. 49 表4-12、複合薄膜之熱電性質比較 …………………………………………… 50

    [1] LaBounty, Chris; Shakouri, Ali; Bowers, John E., “ Design and characterization of thin film microcoolers “ , Journal of Applied Physics 89, 4059 (2001)

    [2] Venkatasubramanian, Rama; Slivola, Edward; Colpitts, Thomas; O'Quinn, Brooks. “Thin-film thermoelectric devices with high room-temperature figures of merit” , Nature (London, United Kingdom) 413, 597 (2001)

    [3] D.M. Rowe,” Possible Offshore Application of Thermoelectric Conversion”, The Marine Technology Society Journal 27, 43 (1994)

    [4] D.M. Rowe, Ph.D. and D.Sc., CRC Handbook of Thermoelectric, CRC Press , Boca Raton, 1994 Chap. 3

    [5] D.M. Rowe, Ph.D. and D.Sc., CRC Handbook of Thermoelectric, CRC Press , Boca Raton, 1994, Chap. 34

    [6] K. E. Goodsoon, M. I. Flik, L. T. Su and D. A. Antoniadis, “Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers”, Journal of Heat Transfer 116, 317 (1994)

    [7] Y. H. Shing, Y. Chang, A. Mirshafii, L. Hayashi, S. S. Roberts, J. Y.Josefowicz and N. Tran, “Sputtered Bi2Te3 and PbTe thin films”, Journal of Vaccum Science and Technology A. 1, 503 (1983).

    [8] E.Chales. E.Groubert, A.Boyer ,”Structural and electrical properties of bismuth telluride films grown by the molecular beam technique”, Journal of Materials Science Letters 7, 575 (1988)

    [9] A.Boulouz, A. Giani , F.Pascal-Delannoy, M. Boulouz, A.Foucaran, and
    A. Boyer , ”Preparation and characterization of MOCVD bismuth telluride thin films”, Journal of Crystal Growth 194 , 336 (1998)

    [10] Helin Zou, D.M. Rowe and Gao Min ,”Preparation and characterizeation of p-type Sb2Te3 and n-type Bi2Te3 thin film grown by coevaporation”, Journal of Vaccum Science and Technology A 19, 899 (2001)

    [11] 郭世偉碩士論文, “Bi/Te複合薄膜濺鍍製程暨其熱電性質研究”,國立清華大學材料所 (2004)。

    [12] L.J. van der Pauw, “A Method of Measuring the Resistivity and Hall coefficient on Lamellae of Arbitrary Shape”, Philips Technical Review
    20 , 220 (1958/59)

    [13] D.M. Rowe, Ph.D. and D.Sc., CRC Handbook of Thermoelectric, CRC Press , Boca Raton, 1994, P215

    [14] http://www.webelements.com/

    [15] V.Damodara Das and N Jayaprakash, “Anomalous variation of resistance in bismuth thin films and the effect of substrate temperature”, Vacuum 31, 133 (1981)

    [16] Thornburg, D. D., Wayman, Clarence M., ”Quantum and classical size effects in the thermoelectric power of thin bismuth films”, Philosophical Magazine 20, 1153(1969).

    [17] V.Damodara Das and S.Vaidehi, “Variation of Energy Gap and Resistivity Minimum Position with Thickness in Bismuth Thin Films”, physica status solidi A 71 , 351(1982)

    [18] B.S. Chandrasekhar , “ The Seebeck coefficient of Bismuth Single Crystals”, Journal of Physics and Chemistry of Solids 11 , 268(1959)

    [19] C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, “Transport Properties of Bismuth Single Crystals”, Journal of Applied physics 34 , 144 (1963)

    [20] Masafumi Nakada, Norikazu Ohshima and Mitsuya Okada ,”Crystal Orientation and Surface Roughness of Bi Films Prepared in Ionized Cluster Beam Apparatus”, Japanese Journal of Applied Physics 35 , 714 (1996)

    [21] V. Simic and Z. Marinkovic ,”Dependence of the crystal orientation of thin evaporated Bi films on thee substrate structure”, Thin Solid films 37 ,L53 (1976)

    [22] Xu Du and A.F. Hebard ,” Large magnetoresistance of bismuth/gold films thermally deposited onto glass substrates “, Applied Physics Letters 82 ,2293 (2003)

    [23] Jen-Hwa, Yung-Shin Sun, Hong-Xian Wang, P.C. Kuo, Tsung-Hsien Hsieh and Chi-Te Liang ,”Substrate dependence of large ordinary magnetoresistance in sputtered Bi films”, Journal of Magnetism and Magnetic Materials 272-276 ,1769 (2004)

    [24] http://www.veeco.com/learning/learning_vaporelements.asp

    [25] R.F. Brebrick ,”Tellurium Vapor Pressure and Optical Density at 370-615 oC”The Journal of Physical Chemistry 72, 1032 (1968)

    [26] http://www.goodfellow.com/csp/active/gfMaterials.csp

    [27] Thaddeus B. Massalski, Hiroaki Okamoto, P.R. Subramanian, Linda Kacprzak,
    Binary alloy phase diagrams, Materials Park, Ohio :ASM International, 1990 , p800

    [28] 吳秀錦教授,”拉塞福回向散射分析及其應用”,科儀新知第十七卷三期, p61 (1995)

    [29] A.K. Sharma , “Thickness Dependence of the Thermoelectric Power of Tellurium Films”, physica status solidi A 77 , K81 (1983)

    [30] Mumtaz A. Dinno and Manuel Schwartz , “Structural dependence of electrical conductivity of thin tellurium films”, Journal of Applied Physics 45, 3326
    (1974)

    [31] S. Chaudhuri, B. chakrabarti and A.K. Pal, “Thermoelectric power of Tellurium films”, Thin Solid Films 82 , 217 (1981)

    [32] D.M. Rowe, Ph.D. and D.Sc., CRC Handbook of Thermoelectric, CRC Press , Boca Raton, 1994, p216

    [33] V.Damodara Das and N. Soundararajan ,”Size and temperature effects on the thermoelectric power and electrical resistivity of bismuth telluride thin films”, Physical Revies B 37, 4552 (1988)

    [34] V.Damodara Das and N. Soundararajan ,”Size and temperature effects on the Seebeck coefficient of thin bismuth films”, Physical Revies B 35 , 5990 (1987)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE