簡易檢索 / 詳目顯示

研究生: 王興宇
Wang, Shing Yu
論文名稱: 高導磁率軟磁薄膜於高頻電磁干擾之屏蔽與應用
Near field conformal shielding and application at MHz frequency range by high permeability soft magnetic thin film
指導教授: 賴志煌
Lai, Chih Huang
口試委員: 唐敏注
黃國威
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 保角屏蔽導磁率軟磁材料
外文關鍵詞: conformal shielding, permeability, soft magnetic material
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著科技發展,積體電路的後端封裝也趨向高速度、微小化邁
    進。其中,尤以高頻段封裝的應用引人興趣。在系統級封裝的趨勢之下,電路
    對於電磁干擾屏蔽的要求較以往更甚。藉由濺鍍、蒸鍍、噴塗方式直接對目標
    進行封裝,也成為業界關注之重點。不同的電磁波屏蔽機制:吸收損耗與反射
    損耗,其影響因子也不盡相同。隨著導磁率上升,吸收損耗會逐漸上升。我們
    針對不同材料物系進行調查,並以製程的改變與濺鍍參數的調控,在軟磁薄膜
    上建立良好異向性,藉此提高薄膜之導磁率,增進整體屏蔽效率。
    首先,針對各軟磁薄膜進行調查,其中包括鈷基、鈷鐵基、鎳鐵基金屬 材料。我們發現:鎳鐵基材料較低之難軸異向性場與鈷基材料較高之飽和磁化 量,皆對於提升材料導磁率有其益處。而足夠高之飽和磁化量與極低之異向性 場 ,使鎳鐵薄膜成為較適於屏蔽之材料。於濺鍍時,外加平行於平面之單向磁 場,可以於薄膜平面上建立單軸異向性,在材料之難軸上,將可達到相當高之 導磁率。以交叉異向性的方式,我們在多方向皆建立了高導磁率之異向性。
    為滿足電磁屏蔽之實際應用需求,我們以插入間隔層的方式,將軟磁薄
    膜之厚度提升至微米等級,以不破壞材料高導磁率的前提下增加屏蔽膜層之厚
    度,並解決了多層膜帶來之附著力、底層問題。最終,以鎳鐵為主要材料,我
    們利用軟磁多層膜大幅增加了屏蔽效率,為產學界提供電磁干擾屏蔽之解答。


    Recently, the development of technology is faster and faster. People are interested in high frequency application, such as EMI shielding. By sputtering, evaporation, or spraying, conformal shielding can not only be a good shielding method, but also combine with the package directly. In this thesis, we study the shielding mechanism, finding that if the permeability of the film gets higher, the absorption loss could become larger at the same time. As a result, we would try to enhance the permeability to get higher shielding effectiveness.
    At first, we established in-plane uniaxial magnetic anisotropy (IPUMA) by applying external magnetic field during sputtering. After controlling the process parameters and investigate several material systems, we found that NiFe thin film exhibits the highest permeability owing to its small anisotropy field (HK) and enough saturation magnetization (MS). Next step, we designed multilayer structure by inserting spacer layer and set crossed anisotropy to make sure permeability is high at every direction.
    Finally, the shielding structure is deposited. Several problems like adhesion problem has been solved. The structure composed of soft magnetic multilayer could enhance the shielding effectiveness significantly, providing a possible solution to industry and academia for solving near field EMI problem.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論與研究動機 1 1.1 前言 1 1.2 研究動機與概述 2 第二章 文獻回顧與相關背景討論 5 2.1 電磁屏蔽 5 2.1.1 屏蔽效率與屏蔽理論 5 2.1.2 保角屏蔽技術發展 12 2.2 高頻應用之薄膜特性 16 2.2.1 軟磁薄膜之要求與特性 16 2.2.2 軟磁薄膜高頻理論 19 2.3 磁性材料性質 23 2.3.1 晶粒大小與導磁率、矯頑場之關係 23 2.3.2 多磁區對軟磁薄膜之影響 25 2.3.3 單軸異向性之建立與調控 29 2.3.4 交叉異向性的建立 34 2.4 軟磁材料系統中的磁損耗 36 第三章 實驗設備與分析儀器 38 3.1 樣品製備 39 3.1.1. 高真空磁控濺鍍系統 39 3.1.2. 磁退火系統 40 3.2 磁性分析儀器 41 3.2.1 震動樣品磁測儀(VSM, vibrating sample magnetometer) 41 3.2.2 聚焦微區磁光柯爾效應量測儀(F-MOKE) 42 3.2.3 高頻導磁率量測儀(3-GHz permeameter) 43 3.3 材料基本性質量測 45 3.3.1 原子力顯微鏡(AFM, atomic force microscopy) 45 3.3.2 X-ray繞射儀(XRD, X-ray diffractometer) 46 第四章 實驗結果與討論 47 4.1 實驗概述 47 4.2 鈷基、鈷鐵基靶材研究 48 4.2.1 CoZrTa 基本磁性研究 48 4.2.2 FeCoCrB 基本磁性研究 52 4.2.3 FeCoTaZr 基本磁性研究 53 4.3 鎳鐵基靶材研究與材料組合 55 4.3.1 NiFe 基本磁性研究 55 4.3.2 材料組合調整異向性 57 4.3.3 NiFe濺鍍條件調整異向性 59 4.3.4 NiFeW 靶材基本磁性研究 63 4.4 多層膜屏蔽結構之設計 65 4.4.1 基板效應 65 4.4.2 底層影響與解決 67 4.4.3 多層膜屏蔽結構附著力之研究 71 4.5 屏蔽效率量測結果 73 第五章 結論 76 第六章 參考文獻 77

    1. 楊繼深, 電磁相容技術之產品研發與認證. 2005: 全華科技圖書股份又限公司.
    2. 葉志豪, USB型即時頻譜分析儀問世 EMI相容性測試成本銳減. 新電子網站, 2016.
    3. Schelkunoff, S.A., Electromagnetic Waves. New York: D. Van Nostrand Co., 1943.
    4. 楊克俊, 電磁相容原理與設計技術. 2006: 全華科技圖書股份有限公司.
    5. 梁振瑋, IDM轉型輕晶圓廠 SiP模組設計趁勢崛起. 新電子網站, 2011.
    6. 工業技術研究院化學工業研究院. 導電性高分子專題調查報告. 1998.
    7. Huang, C.-H., et al. Conformal shielding investigation for SiP modules. in Conformal shielding investigation for SiP modules. 2010. IEEE.
    8. Chen, C.-H., et al., Prediction of near-field shielding effectiveness for conformal-shielded SiP and measurement with magnetic probe. ieee, 2015: p. 77-80.
    9. 江若帆, 軟磁性鈷鐵硼異質結構之高頻特性研究, in 材料科學工程研究所. 2009, 國立清華大學.
    10. Gardner, D.S., et al., Review of On-Chip Inductor Structures With Magnetic Films. IEEE Transactions on Magnetics, 2009. 45(10).
    11. Seemann, K., H. Leiste, and V. Bekker, Uniaxial anisotropy and high-frequency permeability of novel soft magnetic FeCoTaN and FeCoAlN films field-annealed at CMOS temperatures. Journal of Magnetism and Magnetic Materials, 2004. 283(2-3): p. 310-315.
    12. Kittel, C., On the Theory of Ferromagnetic Resonance Absorption. Physical Review, 1948. 73(2): p. 155-161.
    13. Acher, O. and S. Dubourg, Generalization of Snoek’s law to ferromagnetic films and composites. Physical Review B, 2008. 77(10).
    14. Chai, G., et al., Extending the Snoek’s limit of single layer film in (CoZr∕Cu)n multilayers. Applied Physics Letters, 2008. 93(15): p. 152516.
    15. Gilbert, T.L., Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Transactions on Magnetics, 2004. 40(6): p. 3443-3449.
    16. Xu, F., et al., Influence of Cu underlayer on the high-frequency magnetic characteristics of as-sputtered FeCoSiN granular thin films. Journal of Physics D: Applied Physics, 2009. 42(1): p. 15002.
    17. Fan, X., et al., In situ fabrication of Co[sub 90]Nb[sub 10] soft magnetic thin films with adjustable resonance frequency from 1.3 to 4.9 GHz. Applied Physics Letters, 2008. 92(22).
    18. Herzer, G., Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Transactions on Magnetics, 1990. 26(5): p. 1397-1402.
    19. Pfeifer, F. and C. Radeloff, Soft magnetic Ni-Fe and Co-Fe alloys - some physical and metallurgical aspects. Journal of Magnetism and Magnetic Materials, 1980. 19(1-3): p. 190-207.
    20. Bozorth, R.M., Ferromagnetism, Princeton,. D. Van Nostrand
    Company, 1951. Ch.18
    21. Ikeda, K., K. Kobayashi, and M. Fujimoto, Multilayer nanogranular magnetic thin films for GHz applications. Journal of Applied Physics, 2002. 92(9): p. 5395.
    22. Xu, F., et al., Tuning of the magnetization dynamics in as-sputtered FeCoSiN thin films by various sputtering gas pressures. Journal of Applied Physics, 2008. 104(9): p. 93903.
    23. Wiedenmann, H.m. and H. Hoffmann, Field annealing of the uniaxial anisotropy of thin permalloy films. IEEE Transactions on Magnetics, 1969. 5(3): p. 506-510.
    24. Zheng, Y.X., et al., Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline CoFe2O4. Journal of Applied Physics, 2011. 110(4): p. 43908.
    25. Zou, P., W. Yu, and J.A. Bain, Influence of stress and texture on soft magnetic properties of thin films. IEEE Transactions on Magnetics, 2002. 38(5): p. 3501-3520.
    26. Saito, N., H. Fujiwara, and Y. Sugita, A New Type of Magnetic Domain Structure in Negative Magnetostriction Ni-Fe Films. Journal of the Physical Society of Japan, 1964. 19(7): p. 1116-1125.
    27. Soh, W., et al., Magnetization dynamics in permalloy films with stripe domains. Journal of Applied Physics, 2013. 114(5): p. 53908.
    28. Álvarez, N.R., et al., Critical thickness for stripe domain formation in FePt thin films: Dependence on residual stress. Journal of Applied Physics, 2016. 119(8): p. 83906.
    29. Álvarez, N.R., et al., Tunable stress induced magnetic domain configuration in FePt thin films. Journal of Physics D: Applied Physics, 2015. 48(40): p. 405003.
    30. Svalov, A.V., et al., Structure and magnetic properties of thin permalloy films near the “transcritical” state. Magnetics, IEEE Transactions on, 2010. 46(2): p. 333-336.
    31. Wang, G., et al., Observation of rotatable stripe domain in permalloy films with oblique sputtering. Journal of Applied Physics, 2012. 112(9): p. 93907.
    32. Chai, G., N.N. Phuoc, and C.K. Ong, Optimizing high-frequency properties of stripe domain ferrite doped CoFe thin films by means of a Ta buffer layer. Journal of Physics D: Applied Physics, 2013. 46(41): p. 415001.
    33. Li, X., et al., Magnetic properties of permalloy films with different thicknesses deposited onto obliquely sputtered Cu underlayers. Journal of Magnetism and Magnetic Materials, 2015.
    34. Ma, Y.G., et al., Magnetic anisotropy and high frequency permeability of multilayered nanocomposite FeAlO thin films. Journal of Applied Physics, 2006. 100(5).
    35. Chen, X., Y.G. Ma, and C.K. Ong, Magnetic anisotropy and resonance frequency of patterned soft magnetic strips. Journal of Applied Physics, 2008. 104(1): p. 13921.
    36. Zhuang, Y., et al., Shape-induced ultrahigh magnetic anisotropy and ferromagnetic resonance frequency of micropatterned thin Permalloy films. Journal of Applied Physics, 2006. 99(8).
    37. Jamieson, B., et al., Shape-independent permeability model for uniaxially-anisotropic ferromagnetic thin films. Applied Physics Letters, 2010. 96(20): p. 202509.
    38. Kim, I., et al., High frequency characteristics and soft magnetic properties of FeCoBN nanocrystalline films. physica status solidi (a), 2004. 201(8).
    39. Maklakov, S.S., et al., The structure and microwave permeability of thin cobalt films. Nanotechnologies in Russia, 2012. 7(5-6): p. 255-261.
    40. Maklakov, S.S., et al., Thin Co films with tunable ferromagnetic resonance frequency. Journal of Magnetism and Magnetic Materials, 2012. 324(13): p. 2108-2112.
    41. Wang, S.X., et al., Sandwich films: Properties of a new soft magnetic material. Nature, 2000. 407(6801): p. 150-151.
    42. Gerber, A., et al., Permeability and Magnetic Properties of Ferromagnetic NiFe/FeCoBSi Bilayers for High-Frequency Applications. IEEE Transactions on Magnetics, 2007. 43(6).
    43. Romera, M., et al., Magnetic properties of sputtered Permalloy/molybdenum multilayers. Journal of Applied Physics, 2011. 110(8): p. 83910.
    44. Frommberger, M., J. McCord, and E. Quandt, Crossed anisotropy magnetic cores for integrated inductors. Journal of Magnetism and Magnetic Materials, 2005. 290.
    45. Frommberger, M., J. McCord, and E. Quandt, High-frequency properties of FeCoSiB thin films with crossed anisotropy. Magnetics, IEEE Transactions on, 2004. 40(4): p. 2703-2705.
    46. Goodenough, J.B., Summary of losses in magnetic materials. IEEE Transactions on Magnetics, 2002. 38(5): p. 3398-3408.
    47. Yamaguchi, M., et al., Soft magnetic applications in the RF range. Journal of Magnetism and Magnetic Materials, 2004. 268(1-2).
    48. Chen, C.-H., et al., Transmission-line based modeling for conformal shielding in advance system-in-package (SiP). Transmission-line based modeling for conformal shielding in advance system-in-package (SiP), 2015: p. 521-523.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE