簡易檢索 / 詳目顯示

研究生: 王智偉
Chih-Wei Wang
論文名稱: 電感耦合式電漿蝕刻HfAlO金氧半場效電晶體之研究
The Study of Inductively Coupled Plasma etching of HfAlO Based MOSFET
指導教授: 柳克強
Keh-Chyang Leou
蔡春鴻
Chuen-Horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 高介電係數材料二氧化鉿氧化鋁電漿蝕刻
外文關鍵詞: high-k material, HfO2, Al2O3, plasma etch, HfAlO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電感耦合式電漿蝕刻機台發展電漿蝕刻製程,研究蝕刻高介電係數材料HfAlO、二氧化鉿(HfO2)和矽晶圓蝕刻特性,提升高介電係數材料蝕刻速率與對矽晶圓之蝕刻選擇比。實驗操作參數為控制電漿源功率、偏壓功率、腔體壓力與蝕刻時間,研究電漿參數對蝕刻速率與選擇比的影響與變化。由文獻得知離子轟擊能量和反應物種強度對蝕刻速率有顯著影響,因此,利用電漿診斷技術進行線上監控電漿狀態,使用射頻阻抗計(Impedance meter),測量晶圓座上的離子電流(Ion current)和射頻峰值電壓(RF peak voltage);以光譜儀量測氯原子(Cl:725.7 nm)、氯化硼分子(BCl:271.99 nm)、氬原子(Ar:750.4 nm)光譜強度幫助分析蝕刻特性。
    使用三氯化硼混合氬氣電漿蝕刻HfAlO、HfO2與圖案矽晶圓。實驗發現三氯化硼電漿容易在矽晶圓表面形成鈍化層,產生沈積反應,以致於矽晶圓幾乎不蝕刻,可得高介電係數材料對矽晶圓蝕刻選擇比到達10以上。


    The etching properties of HfAlO, HfO2 and silicon wafer with pattern were investigated using inductively coupled high density plasma etcher. To develop plasma etch process of high dielectric gate oxide. The effects of the experimental parameters, including ICP power, bias power, chamber pressure and etching time, on the etch rate and selectivity were studied. The ion energy and reactive species were found to significantly enhance the HfAlO etch rate and improve the etching selectivity to Si from reference. Therefore, we measured the radio frequency peak voltage and ion current by impedance meter. We measured the intensity of plasma species, including Ar(750.4 nm), Cl(725.7 nm) and BCl(271.99 nm) by optical emission spectroscopy.
    Plasma etching of HfAlO, HfO2 and silicon wafer with pattern was studied in BCl3/Ar plasmas. The etch rate of Si is suppressed in BCl3 plasmas, due to formation of the passivation layer and reduced Cl density. We increased etching selectivity above 10 at lower bias power and chamber pressure.

    第一章 簡介 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 高介電係數材料之選擇與發展 4 2.2 HfO2薄膜介紹 5 2.3 HfO2薄膜之電漿蝕刻 7 2.4 HfAlO薄膜之電漿蝕刻 21 2.5 文獻討論 22 第三章 基本原理 24 3.1 電漿基本原理 24 3.2 電漿蝕刻機制 25 3.3 電漿與矽蝕刻反應機制 27 3.4 放射光量測定原理 29 3.5 離子能量(Ion Energy) 31 3.6 離子電流(Ion current) 32 第四章 研究方法與實驗設備 35 4.1 研究方法 35 4.2 電感耦合式電漿源(ICP)蝕刻系統 35 4.3 射頻阻抗計(Impedance Meter) 38 4.4 光學放射光譜儀(OES) 40 4.5 橢圓測厚儀(Ellipsometer) 42 第五章 實驗研究規劃討論 44 5.1 實驗步驟 44 5.2 射頻阻抗計校正 46 5.3 頭片效應實驗 50 5.4 蝕刻重現性實驗 53 5.5 蝕刻均勻度實驗 56 5.6 蝕刻速率與電漿源功率關係 58 5.7 蝕刻速率與偏壓功率關係 60 5.8 蝕刻速率與腔體壓力關係 64 5.9 蝕刻速率與蝕刻時間關係 67 5.10 電漿蝕刻實驗-HfO2 72 5.11 電漿蝕刻實驗-比較HfAlO和HfO2之蝕刻速率 77 第六章 結論 80 參考文獻 82附錄 85

    [1] H.S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, IEEE Trans. Electron Devices. vol. 43, pp. 1233-1241 (1996)
    [2] L. Kang, B.H. Lee, W.J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J.C. Lee, IEEE Electron Device Letters. vol. 21, pp. 181-183 (2000)
    [3] K.J. Hubbard and D.G. Schlom, J. Master. Res., vol.11, pp. 2757-2776 (1996)
    [4] G.D. Wilk, and R.M. Wallance, Appl. Phys. Lett., vol. 74, no. 19, pp. 2854-2856 (1999)
    [5] R. Puthenkovilakam, Y.S. Lin, J. Choi, J. Lu, H.O. Blom, P. Pianetta, D. Devine, M. Sendler, J.P. Chang, J. Appl. Phys. 97, pp. 023704 (2005)
    [6] W.C. Lee, Y.J. Lee, Y.D. Wu, P. Chang, Y.L. Huang, Y.L. Hsu, et al., Journal of Crystal Growth, 278, pp. 619-623 (2005)
    [7] Y. Kim, G. Gebara, M. Frelier, J. Barnett, D. Riley, J. Chen, K. Torres, J.E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G.A. Brown, et al., IEDM Tech. Dig., pp. 455-458, (2001)
    [8] S. Norasetthekul, P.Y. Park, K.H. Baik, et al., APPLIED SURFACE SCIENCE 187 (1-2): 75-81 (2002)
    [9] J. Chen, W.J. Yoo, Z.Y. Tan, et al., J. Vac. Sci. Techol. A 22 (4): 1552-1558 (2004)
    [10] J. Chen, K.M. Tan, N. Wu, et al., J.Vac. Sci. Techol. A
    21 (4): 1210-1217 (2003)
    [11] L. Sha, R. Puthenkovilakam, Y.S. Lin, J.P. Chang, J. Vac. Sci. Techol. B 21 (6): 2420-2427 (2003)
    [12] C. Wang, V.M. Donnelly, J. Vac. Sci. Techol. B 23 (2): 547-553 (2005)
    [13] L. Sha, J.P. Chang, J. Vac. Sci. Techol. A 22 (1): 88-95 (2004)
    [14] K. Takahashi, K. One, Y. Setsuhara, J. Vac. Sci. Techol. A 23 (6): 1691-1697 (2005)
    [15] M. Helot, T. Chevolleau, E. Blanquet, P. Mangiagalli, et al., J. Vac. Sci. Techol. A 24 (1): 30-40 (2006)
    [16] Hong Xiao, 半導體製程技術導論, 羅正中、張鼎張 譯, 歐亞, (2003)
    [17] Brian Chapman, Glow Discharge Processes, John Wiley,
    (1980)
    [18] Dennis M. Manos, Daniel L. Flamm, Plasma Etching: An Introduction, Academic, New York (1989)
    [19] Michael A. Lieberman, Allan J. Lichtenberg, PRINCIPLES OF
    PLASMA DISCHARGES AND MATERIALS PROCESSING, John
    Wiley,(1994)
    [20] 張正宏,國立清華大學工程與系統科學系博士論文,(2003)
    [21] 雷舜誠,國立清華大學工程與系統科學所碩士論文,(2001)
    [22] 沈尚賢,國立清華大學工程與系統科學所碩士論文,(2005)
    [23] S.J. Ullal, A.R. Godfrey, E. Edelberg, L. Braly, V. Vahedi, E.S. Aydil, J. Vac. Sci. Techol. A 20 (1): 43-52 (2002)
    [24] R. Patrick, S. Baldwin, N. Williams, J. Vac. Sci. Techol. A 18 (2): 405-410 (2000)
    [25] J.Y. Choe, I.P. Herman, V.M. Donnelly, J. Vac. Sci. Technol. A 15 (6): 3024-3031 (1997)
    [26] M.A. Sobolewski, J. Appl. Phys. 90, 2660-2671 (2001)
    [27] S. Bushman, T.F. Edgar, I. Trachtenberg, J. Electrochem. Soc. 144, 721 (1997)
    [28] http://www.oceanoptics.com/
    [29] http://www.sopra-sa.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE