簡易檢索 / 詳目顯示

研究生: 黃幼萱
Yu-Hsuang Huang
論文名稱: 微型強健溫度感測器-適合用於多感測器架構
A Small and Robust Temperature Sensor Suitable for Multi-Sensor Architecture
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 44
中文關鍵詞: 溫度感測器
外文關鍵詞: temperature sensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積體電路需在合理的溫度下操作以維持在正確的工作狀態。由於超大型積體電路的元件密度持續增加,在20世紀末,一顆晶片的總功率消耗已經超過了100瓦。一些多晶片封裝的模組甚至可以消耗數千瓦的功率。所以,我們需要精密的冷卻方法去降低這些能量所產生的熱能。然而,任何一些週邊環境的變化或干擾使得晶片暫時脫離冷卻系統的控制,都可能造成過熱而導致系統永久的損害。
    為了防止上述原因,特別的量測機制分別在產品測試和晶片操作期間建立。最直觀的方法就是在超大型積體電路的晶片中建立溫度感測器,用合適的電路提供方便的輸出以供利用。其中,嵌入式相較於分立式無論在成本或是精準度上的考量都較適合作為實現的方法。類似著名的測試性設計,熱測試性設計也被提出。
    在這篇論文中,利用金氧半電晶體操作在弱反轉時漏電流的溫度特性,一個適合用於多感測器架構的溫度感測器被提出。除了具有面積小、低功率消耗的特性外,此架構包括了一個數位化的介面,使得量測結果更容易和數位系統溝通。而在多感測器的架構中,量測系統對於製程偏移所產生的不理想效應將有更大的容忍程度,進而降低了在生產後的校正程序。藉由此量測系統的使用,將有助於熱管理系統的穩健程度,並大大地增加了系統晶片的可靠度。最後,這個電路是以台積電0.18微米的製程模型作模擬。


    Power densities in the high-performance VLSI chips are increasing vastly. Transistors dissipate power during operation; the faster the operation’s speed is, the more heat is generated. This leads to the rise of temperature in chips. Thus, many cooling solutions, those were dependent on the temperature sensor for detection of temperature, were presented to manage the heat dissipation.
    This thesis presents a temperature sensor as a basic building unit in a multi-sensor based temperature sensing system. The dependence of leakage currents and temperature is utilized to develop a temperature sensor as a basic unit of a temperature sensor scheme. Exhibiting an acceptable accuracy of 1.3oC, the proposed sensor is characterized by a pretty low area overhead of 0.001mm2 and the low power consumption of 250 uW. The proposed multi-sensors architecture can be much more robust than single sensor version and the calibration cost can be reduced. Applying this temperature sensing method in dynamic thermal management, the VLSI circuits are more reliable and operated in a safer environment.

    Chapter 1 Introduction 7 1.1 Thermal Management 9 1.2 Multi-Sensor Architecture 10 1.2.1 Example 11 Chapter 2 Previous Works 13 2.1 Bipolar Transistor Temperature Sensor 13 2.1.1 Basic Principle 15 2.1.2 Bandgap Reference 17 2.1.3 PTAT Current Generation 19 2.2 CMOS Temperature Sensors 20 2.2.1 Ring Oscillator Based Temperature Sensor 21 2.3 Motivation 23 Chapter 3 The Proposed Temperature Sensor 25 3.1 Preliminary 26 3.2 TEMPERATURE -TO-PULSE GENERATOR 27 3.2.1 Sensor Operation 27 3.2.2 Cycle Sampler 29 3.3 TIME -TO-DIGITAL CONVERTER 30 3.3.1 Inhomogeneous Delay Chain 32 3.3.2 Thermal Compensation 34 Chapter 4 Simulation Results and Comparison 35 4.1 Simulation Result 35 4.2 Monte-Carlo Analysis 38 4.3 Layout 40 4.4 Comparison 41 Chapter 5 Conclusions 42

    [1] Kiyoo Itoh, VLSI Meomoy Chip Design, Springer-Verlag, 2001.
    [2] “International Technology Roadmap for Semiconductors 2001 edition,” Semiconductor Industry Association, 2001
    [3] Intel Prneium 4 Processor in the 423-pin Package at 1.30, 1.40, and 1.50 GHz Datasheet. [Online] Available:http://developer.intel.com/design/pentium4/ datashts/249198.pdf
    [4] AMD Athlon Processor PGA Data Sheet. [Online]. (2000, Oct.) Available: http:// www.amd.com/products/cpg/athlon/techdocs/pdf/23 792.pdfmany
    [5] K.Skadron, M.R.Stan, K. Sankaranarayanan, W. huang, S.velusamy, and D. Trarjan, “Temperature-Aware Microarchitecture: Modeling and Implementation,” ACM transactions on architecture and code optimization, Vol. 1, No. 1, Mar. 2004, pp. 94-125.
    [6] Y.P.Xu, R. Frick, M.R. Haskard, “A Novel Sensing technique based on a sensor array,” Sensors and Actuators, 2000, pp. 135-138.
    [7] C.F.Lee and Y. P. Xu, “A Multi-Sensor Based Temperature Measuring System with Self-Diagnosis” Proc. IEEE region 10 international conference on electrical and electronics technology, 2001, pp. 903-906.
    [8] M.Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS temperature sensor with a 3σ inaccuracy of ±0.5oC from -50 oC to 120 oC,” Proc. of IEEE ISSCC Dig.Tech. Papers, vol. 1, Feb. 2003, pp. 200-201.
    [9] S.Kaxiras and P.Xekalakis, “4T-Decay Sesnsors: A New Class of Small, Fast, Robust, and Low-Power, Temperature/Leakage Sensors”, Proc. of ISLPED’04, Aug. 2004, pp. 108-113..
    [10] G. M. QuCnot, N. Paris, and B. Zavidovique, “A temperature and voltage measurement cell for VLSI circuits,” Proc. of Euro-ASIC, 1991, pp. 334-338.
    [11] P.Chen, C.C.Chen, C.C.Tsai, and W.F.Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” Journal of Solid-State Circuits, Vol. 40, no.8, Aug. 2005, pp. 1642-1648.
    [12] A.Srivastava, et al. “Modeling and Analysis of Leakage Power Considering Within-Die Process Variations,” Proc. of ISLPED 2002, pp. 64-67.
    [13] A.Bakker and J. H. Huijsing, “A low-cost high-accuracy CMOS smart temperature sensor,” Proc. of ESSCIRC, Sep. 1999, pp. 302-305.
    [14] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill International Edition, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE