簡易檢索 / 詳目顯示

研究生: 周佑謙
Yu-Chien Chou
論文名稱: 矽奈米線之拉曼效應致發光
Light Emission from Si Nanowires by Raman Effect
指導教授: 嚴大任
Ta-Jen Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 106
中文關鍵詞: 矽奈米線拉曼效應光致發光
外文關鍵詞: Si nanowires, Raman effect, photoluminescence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽基之光學元件利用光子取代電子作為傳遞資訊之載子的嶄新概念,被認為能夠全盤性的改善IC工業上由於元件尺寸縮減所面臨的瓶頸,因而廣為受到大眾所矚目,也為光子時代開創了一條先驅的路。最近,一些研究團隊利用拉曼散射的原理,成功的製造出第一具全矽基材的拉曼雷射,也為我們建立起了先導的工作。為了改善前人的缺點並近一步改善元件之性能,因此,我們利用一維奈米材料的獨特性質來建構矽奈米線之光學元件。本論文中介紹了不同的矽奈米線成長機制,並成功地經由不同的製程方法合成矽奈米線以期獲得最佳型態之矽奈米線,同時研究不同實驗參數之影響。此外,我們亦量測了奈米線獨特的物理和光學性質在不同製程狀況下和奈米線的形狀、直徑、結晶指向的相關性。結果來說,我們成功的証實一維的矽奈米線確實能夠改進矽塊材之發光性質,並經由適當的製程條件來達成較佳的控制能力。在未來的研究中,我們期望可以利用一維奈米線的特殊性質,實現矽奈米線的雷射效應,更進一步創造多功能之主動光學元件,甚至建構起矽奈米線為主的單晶片之光子光路。


    Silicon-based optical devices have been attracting people’s eyes recently because it can totally revolutionize the bottleneck in today’s IC fabrication industry due to diminishing dimension of component by using photons instead of electrons as data carrier and create a pioneering avenue toward photonic generation. Latterly, some investigating groups successfully demonstrated the first all-silicon laser based on Raman scattering and exhibited as a forerunner for us. In behalf of breaking through several drawbacks as well as ameliorating the performance compared with the previous work, we utilize specific qualities of one-dimensional nanomaterials as backbone to construct silicon nanowires-based optical devices. Therefore, in this thesis we introduce several different growth mechanisms of nanowires and successful synthesize silicon nanowires via diverse fabrication processes in order to optimize the morphology of samples, meanwhile, investigate influence from different experimental parameters. Besides, we further examine unique physical and optical characteristics of silicon nanowires dependent on shape, diameter or orientation occurred from variation of different fabrication processes. In conclusion, we prove that one dimension silicon nanowires indeed promote poor light emission in bulk silicon and achieve better controllability though adequate fabrication process. In the future, we will expect to actualize the lasing effect and further carry out active multifarious optical devices, even realizing a silicon nanowires based optical circuit within one single chip.

    Abstract Acknowledgement ContentsList of figures Chapter 1. Introduction 1.1 Overview 1.2 Experimental motivations and goals Chapter 2. Nanowire-based applied device 2.1 Introduce to nanotechnology 2.2 Low-dimension material 2.3 Specific properties of nanowires 2.3.1 Fine feature size 2.3.2 High area/volume ratio 2.3.3 High quantum efficiency 2.3.4 Size and dimensionality dependent properties 2.4 Synthesis of nanowires 2.4.1 The strategy for nanowires growth 2.4.2 Vapor-Liquid-Solid method 2.4.3 Solid-Liquid-Solid method 2.4.4 Oxide assisted growth method 2.4.5 Wet etching process 2.5 Applications of nanowires Chapter 3. Silicon-based Raman laser 3.1 Limitations of silicon 3.2 Superiority of silicon in optical field 3.3 Mechanism for silicon light 3.3.1 Silicon nanocrystal 3.3.2 Erbium doped silicon-rich oxide 3.3.3 Si/SiGe quantum cascade structure 3.3.4 Stimulated Raman amplification 3.4 Development of silicon Raman laser 3.5 Future perspectives Chapter 4. Experimental procedure 4.1 Fabrication of silicon nanowires 4.1.1 VLS growth method 4.1.2 CVD-VLS growth method 4.1.3 Wet-etching process 4.1.4 Metal particle-assisted wet-etching growth method 4.1.5 Thermal oxidation modifies diameter 4.2 Measurement of silicon nanowires optical property 4.2.1 Photoluminescence spectrum 4.2.2 Raman spectrum 4.3 Analyzed instruments and sample preparation 4.3.1 Scanning electric microscopy 4.3.2 Energy dispersive X-ray spectrometer 4.3.3 X-ray Diffractometer 4.3.4 Transmission electronic microscopy 4.3.5 Cathodoluminescence Chapter 5. Results and Conclusions 5.1 Silicon nanowires growth via VLS method 5.1.1 Morphology analysis 5.1.2 Influence of fabrication parameters 5.2 Silicon nanowires growth via CVD-VLS method 5.3 Silicon nanowires growth via wet etching method Silicon 5.3.1 Morphology analysis of wet etching process 5.3.2 Influence of gold particles-assisted method 5.3.3 Influence of annealing temperature 5.3.4 Influence of sputtering duration 5.3.5 Influence of crystalline orientation 5.3.6 Thermal oxidation modifies diameter 5.4 Analysis and optical properties of silicon nanowires 5.4.1 X-ray Diffractometer analysis 5.4.2 Raman spectra of silicon nanowires 5.4.3 Photoluminescence spectrum of silicon nanowires 5.4.4 Cathodoluminescence spectrum of silicon nanowires Chapter 6. Future work References Figures

    1. J. Faist, Nature 433, 691 (17 Feb, 2005).
    2. M. Kanellos, “Intel unveils silicon laser,” CNET News.com 2005.
    3. http://www.intel.com/technology/silicon/sp/. (2005).
    4. L. Pavesi, in Materialstoday. (Jan., 2005) pp. 18.
    5. E. Rosencher, B. Vinter, Optoelectronics (2002), pp. 744.
    6. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, F. Priolo, Nature 408, 440 (2000).
    7. L. Khriachtcheve, M. Rasanen, S. Novikov, J. Sinkkonen, Appl. Phys. Lett. 79, 1249 (2001).
    8. L. Pavesi, J. Phys. Condes. Matter 15, 1169 (2003).
    9. S. Coffa, G. Franzo, F.Priolo, Appl. Phys. Lett. 69, 2077 (1996).
    10. S. Coffa, G. Franzo, F.Priolo, A. Pacelli, A. Lacaita, Appl. Phys. Lett. 73, 93 (1998).
    11. M. E. Castagna, paper presented at the Proc. 32th European Solid-State Device Res. Conf., Firenze, Italy, University of Bologna 2002.
    12. S. A. Lynch et al., Appi. Phys. Lett. 18, 1543 (2002).
    13. L. Diehl et al., Appl. Phys. Lett. 18, 4700 (2002).
    14. G. Dehlinger et al., Science 290, 2277 (2000).
    15. H. Rong et al., Nature 433, 292 (20 Jan, 2005).
    16. H. Rong et al., Nature 433, 725 (17 Feb, 2005).
    17. O. Boyraz, B. Jalali, Optics Express 12, 5269 (13 Oct, 2004).
    18. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, Nature 415, 621 (07 Feb, 2002).
    19. L. L. Sohn, Nature 394, 131 (09 July, 1998).
    20. A. P. Alivisatos, Science 271, 933 (1996).
    21. 林鴻明、林中魁, 奈米科技應用研究與展望 (工業材料 179期, 2001), pp. 84-91.
    22. www-306.ibm.com/chips/periodic/xe-a.html.
    23. T. C. Chang, C. S. Chang, H. N. Lin, T. T. Tsong, Appl. Phys. Lett. 67, 903 (1995).
    24. J. Song, e. al., Appl. Phys. A 66, S715 (1998).
    25. "There's Plenty of Room at the Bottom", J. of MEMS, 1 (1992).
    26. www.seas.upenn.edu/mse/research/nanotubes.html.
    27. S. Iijima, Nature 354, 56 (1991).
    28. M. S. Dresseelhaus, G. Dresseelhaus, R. Saito, Carbon 33, 883 (1995).
    29. D. Appell, Nature 419, 553 (2002).
    30. R. Kubo, J. phys. Soc. 21, 1765 (1996).
    31. 羅吉宗等, 奈米科技導論 (2001).
    32. Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
    33. Y. Arakawa, A. Yariv, IEEE J. Quantum Electron. 22, 1887 (1986).
    34. Y. Miyamoto, Y. Miyake, M. Asada, Y. Suematsu, IEEE J. Quantum Electron. 25, 2001 (1989).
    35. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
    36. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000).
    37. http://www.unics.uni-hannover.de/nhcfoeke/solar.
    38. D. P. Yu et al., Physical Review B 59, R2498 (1999).
    39. J. Luo, L. Zhang, Y. Zhang, J. Zhu, Adv. Mater. 14, 1413 (2002).
    40. F. J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, MRS BULLETIN 24, 20 (1999).
    41. J. Hu, T. W. Odom, C. M. Lieber, Accounts of Chemical Research 32, 435 (24 Sep, 1998).
    42. Y. Wu, P. Yang, Journal of American Chemical Society 123, 3165 (2001).
    43. A. M. Morales, C. M. Lieber, Science 279, 208 (9 Jan, 1998).
    44. M. Paulose, O. K. Varghese, C. A. Grimes, Journal of Nanoscience and Nanotechnology 3, 341 (18 Oct, 2003).
    45. H. F. Yan et al., Chemical Physics Letters 323, 224 (16 Jun, 2000).
    46. R.-Q. Zhang, Y. Lifshitz, S.-T. Lee, Adv. Mater. 15, 635 (2003).
    47. Y. F. Zhang et al., J. of Crystal Growth 197, 136 (1999).
    48. K. Peng, Y. Yan, S. Gao, J. Zhu, Adv. Funct. Mater. 13, 127 (2003).
    49. K. Peng, Z. Huang, J. Zhu, Adv. Mat. 16, 73 (2004).
    50. K.-H. Liu, National Chiao Tung University (2005).
    51. K.-Q. Peng, Y.-J. Yan, S.-P. Guo, J. Zhu, Adv. Mater. 14, 1164 (2002).
    52. K. Peng et al., Angew. Chem. Int. Ed. 44, 2737 (2005).
    53. Q. Gu, H. Dang, J. Cao, J. Zhao, S. Fan, Appl. Phys. Lett. 76, 3020 (2000).
    54. Y. Zhang et al., Journal of Crystal Growth 226, 185 (2001).
    55. R. Q. Zhang, T. S. Chu, H. F. Cheung, N. Wang, S. T. Lee, Materials Science and Engineering C 16, 31 (2001).
    56. Y. Cui, C. M. Lieber, Science 291, 851 (2001).
    57. X. Duan, Y. Huang, C. M. Lieber, Nano Letters 2, 487 (2002).
    58. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (07 Feb, 2002).
    59. M. H. Huang et al., Science 292, 1897 (8 Jun, 2001).
    60. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (17 August, 2001).
    61. T. K. Liang, H. K. Tsang, Applied Physics Letters 184, 2745 (2004).
    62. T. K. Liang, H. K. Tsang, paper presented at the Conference on Lasers and Electro-Optics (CLEO). IEEE, Piscataway, NJ, USA 2004.
    63. http://www.bell-labs.com/org/physicalsciences/projects/qcl/qcl.html.
    64. A. Borak, Science 308, 638 (2005).
    65. O. Boyraz, B. Jalali, Optics Express 13, 796 (2005).
    66. R. F. Service, Science 307, 1551 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE